
Web Scaling Frameworks
PhD Transfer Event

Thomas Fankhauser
Qi Wang

Christos Grecos
Xinheng Wang

Ansgar Gerlicher

Master´s Thesis

Original Idea

Thomas Fankhauser
Super Scale Systems

2012

Work Packages & Publications

IEEE ICC14

CONFERENCE
PAPER

IEEE TSC

JOURNAL
PAPER CONFERENCE

PAPER THESIS

April 2013 November 2014

April 2016
Web Scaling
Framework

WP1
Post-

Processing

WP2
Thesis

WP3

we’re here!

Literature
Review

Data
Collection

Analysation

Model
Adaption

Write Up

Design

Implementation

Literature
Review
Report

Datasets
Charts

Design
Documents

Program

Data
Collection

Analysation

Model
Adaption

Write Up

Design

Implementation

Datasets
Charts

Design
Documents

Program

Literature
Review

Data
Collection

Analysation

Model
Adaption

Write Up

Design

Implementation

Literature
Review
Report

Datasets
Charts

Design
Documents

Program

Data
Collection

Analysation

Transfer

Combine
Write Up

Design

Implementation

Datasets
Charts

Design
Documents

Program

Project Roadmap

Web Scaling Frameworks: IEEE ICC Conference Paper
IEEE ICC14

CONFERENCE
PAPER

IEEE TSC

JOURNAL
PAPER CONFERENCE

PAPER THESIS

April 2013 November 2014

April 2016
Web Scaling
Framework

WP1
Post-

Processing

WP2
Thesis

WP3

we’re here!

Literature
Review

Data
Collection

Analysation

Model
Adaption

Write Up

Design

Implementation

Literature
Review
Report

Datasets
Charts

Design
Documents

Program

Data
Collection

Analysation

Model
Adaption

Write Up

Design

Implementation

Datasets
Charts

Design
Documents

Program

Literature
Review

Data
Collection

Analysation

Model
Adaption

Write Up

Design

Implementation

Literature
Review
Report

Datasets
Charts

Design
Documents

Program

Data
Collection

Analysation

Transfer

Combine
Write Up

Design

Implementation

Datasets
Charts

Design
Documents

Program

Work Package 1

Web Scaling Frameworks:
A novel class of frameworks for scalable web

services in cloud environments
Thomas Fankhauser⇤†, Student Member, IEEE, Qi Wang⇤, Member, IEEE, Ansgar Gerlicher†, Member, IEEE,

Christos Grecos⇤, Senior Member, IEEE and Xinheng Wang⇤, Member, IEEE

Abstract—The social web and huge growth of mobile smart

devices dramatically increases the performance requirements

for web services. State-of-the-art Web Application Frameworks

(WAFs) do not offer complete scaling concepts with automatic

resource-provisioning, elastic caching or guaranteed maximum

response times. These functionalities, however, are supported

by cloud computing and needed to scale an application to its

demands. Components like proxies, load-balancers, distributed

caches, queuing and messaging systems have been around for a

long time and in each field relevant research exists. Nevertheless,

to create a scalable web service it is seldom enough to deploy

only one component. In this work we propose to combine those

complementary components to a predictable, composed system.

The proposed solution introduces a novel class of web frame-

works called Web Scaling Frameworks (WSFs) that take over the

scaling. The proposed mathematical model allows a universally

applicable prediction of performance in the single-machine- and

multi-machine scope. A prototypical implementation is created to

empirically validate the mathematical model and demonstrates

both the feasibility and increase of performance of a WSF. The

results show that the application of a WSF can triple the requests

handling capability of a single machine and additionally reduce

the number of total machines by 44%.

I. INTRODUCTION

The enormous growth of smart mobile devices in com-
bination with social web services increases the number of
requests that need to be processed by modern web platforms
in a timely fashion. Whereas cloud computing provides the
ability to provision the hardware needed, state-of-the-art Web
Application Frameworks (WAFs) do not offer integrated scal-
ing concepts to deal with automatic resource-provisioning and
elastic caching or ensure a guaranteed maximum response
time.

They are rather designed to abstract common functionali-
ties needed for web application development including data-
management, url-mapping, session-handling and response-
generation. Today, users progressively access the social web
from anywhere using their mobile smart devices, which leads
to increased traffic. A single computing resource might not
be able to satisfy such an amount of requests - only the
junction of multiple computing resources, where each resource
gets a small share of the total requests, allows to handle

⇤School of Computing, University of the West of Scotland, Email:
{Thomas.Fankhauser, Qi.Wang, Christos.Grecos, Xinheng.Wang}@uws.ac.uk

†Mobile Application Development, Stuttgart Media University, Email:
{fankhauser, gerlicher}@hdm-stuttgart.de

such huge amounts of requests in aggregation. Handling the
exponentially increasing global requests adds the requirement
of being able to run multiple instances of an application
for highly scalable web services. The major challenges that
are introduced by this requirement are the management of
the shared resources, the balancing of the requests among
all instances and the decision when to spawn or terminate
instances. These challenges are collectively referred to as
horizontal scaling [13], [14], [16].

Our experiments have showed that WAFs have different
strengths and weaknesses. A highly abstracted WAF like
Ruby on Rails, for example, was slower than the very thin
WAF node.js but more powerful regarding data management
and interface rendering. If a web service needs to provide
both a fast and slim JSON API and a full blown HTML
website it is the best solution to combine both WAFs. As
both the horizontal scaling and web service composition are
very complex matters, it makes sense not to introduce them
to WAFs but offload them to another layer - the Web Scaling
Framework (WSF) proposed in this paper. Fig. 1 illustrates a
WSF that incorporates multiple WAF applications.

Fig. 1. The relationship between the WSF and WAFs

To comply to a proposed class of WSFs, a WSF should:
• take over the responsibilities of scaling and incorporate

existing WAFs
• separate the business logic in the web service from the

hosting logic
• connect to and combine existing WAFs to a compound

web service using standard HTTP requests
• introduce low overhead when added, whilst adding the

instant ability to scale
• constantly adapt their infrastructure to fit the required

performance at all times

Presented at IEEE Flagship Conference:
IEEE International
Conference on Communications 2014
in Sydney, Australia

Web Scaling Frameworks: IEEE ICC Conference Paper

Work Package 1

Web Scaling Frameworks: IEEE ICC Conference Paper

Work Package 1

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
eq

ue
st

s
/ S

ec
on

d
(R

PS
)

Cache / Processing Ratio (CPR)

c = 320
u = 0
s = 30
da = 0.400
dn = 0.012
ds = 0.001
df = 0.050

normal
scaled
better
worse

BEPCPR = 0.111
S1,S: RPS = 1441

S1,N: RPS = 723

 0

 20

 40

 60

 80

 100

 120

 140

 160

0 200k 400k 600k 800k 1M

To
ta

l M
ac

hi
ne

s
(M

)

Maximum Request Flow per Second (RFPSmax)

MNMSMReg,NMReg,S

CPR = 0.7
dn,min = 0.00
dn,gain = 0.01
s = 50
ds = 0.001
c = 6000
cn,max = 8000

dLB = 0.0001
dQ = 0.001
dPS = 0.001
dC = 0.001
dS = 0.001
dw = 0.5
da = 0.5

Work Packages & Publications

IEEE ICC14

CONFERENCE
PAPER

IEEE TSC

JOURNAL
PAPER CONFERENCE

PAPER THESIS

April 2013 November 2014

April 2016
Web Scaling
Framework

WP1
Post-

Processing

WP2
Thesis

WP3

we’re here!

Literature
Review

Data
Collection

Analysation

Model
Adaption

Write Up

Design

Implementation

Literature
Review
Report

Datasets
Charts

Design
Documents

Program

Data
Collection

Analysation

Model
Adaption

Write Up

Design

Implementation

Datasets
Charts

Design
Documents

Program

Literature
Review

Data
Collection

Analysation

Model
Adaption

Write Up

Design

Implementation

Literature
Review
Report

Datasets
Charts

Design
Documents

Program

Data
Collection

Analysation

Transfer

Combine
Write Up

Design

Implementation

Datasets
Charts

Design
Documents

Program

Project Roadmap

Submitted to:
IEEE Transactions on Services Computing

DRAFT 0.5: IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, JANUARY 2015 1

Introducing Elastic Scalability to Web Services in
the Cloud with Web Scaling Frameworks

Thomas Fankhauser, Student Member, IEEE, Qi Wang, Member, IEEE, Ansgar Gerlicher, Member, IEEE,
Christos Grecos, Senior Member, IEEE, and Xinheng Wang, Member, IEEE

Abstract—In the social web, web services have to accommodate a significant number of requests due to the high interactivity of
current applications. Applications have to be built in a scalable fashion so the number of machines can be adapted to highly dynamic
traffic situations. In the deployment context, web service providers often need to focus initially on the business logic which prevents
detailed scalability considerations. If however a critical mass of customers is reached, providers need to be able to scale-up
immediately their web services to stay in business. State-of-the-art Web Application Frameworks (WAFs) focus on the creation of
application logic including data validation, view composition and session handling. However, they don’t offer integrated cloud scaling
concepts that handle the automatic provisioning of resources. Web service providers have to create custom-built systems that consider
scalability issues manually. As the creation of such scaling-systems is a very complex, we proposed in our recent work the concept of
Web Scaling Frameworks (WSFs) in order to offload scaling to another layer of abstraction. WSFs are composed of traditional WAFs
with multiple other components to provide scalability right from the launch of the deployment cycle. In this work, a detailed design for
WSFs including necessary modules, interfaces and components is presented. A mathematical model used for performance rating is
evaluated and enhanced on a computing cluster of 42 machines. Traffic traces from over 25 million real-world applications are analysed
and evaluated on the cluster to compare the WSF performance with a traditional scaling approach using WAFs and caches. The results
show that the application of WSFs can reduce the number of total machines needed for three representative real-world applications —
a social network, a trip planner and the FIFA World Cup 98 website — by 32%, 63% and 92% respectively.

Index Terms—scalability, web service, cloud computing, web scaling frameworks, performance evaluation, software architecture

F

1 INTRODUCTION

THE demands for modern web services increase due to
the soaring social nature of the web and the upsurge

of the total number of mobile devices. Web services have to
deal with a high level of interactivity in applications, which
in turn introduces enormous amounts of requests. Static
websites are replaced by dynamic and highly interactive
applications. For instance, TV shows deploy apps that allow
users to influence the course of the show, advertisements are
brought to customers only if they remain in the vicinity of
advertised target locations, smart sensors deliver data for
all kinds of metrics which users see on their mobile devices,
and cars communicate traffic situations, report traffic jams
and find intelligent routes based on live data.

The above scenarios introduce new challenges to web
service providers and developers. As single-server systems
are not able to handle the increased load, applications
need to be built in a scalable fashion. Requests have to be
balanced over all available machines, resources need to be
shared without conflicting versions, distributed transactions
have to be processed in a fault tolerant manner, and the
number of machines has to be adapted to highly dynamic
traffic situations. Typically, web service providers need to
reach a critical mass of users to be successful. If the critical

• T. Fankhauser, Q. Wang and X. Wang are with the School of Computing,
University of the West of Scotland
E-mail: {Thomas.Fankhauser, Qi.Wang, Xinheng.Wang}@uws.ac.uk

• C. Grecos is an Independent Imaging Consultant.
E-mail: grecoschristos@gmail.com

• A. Gerlicher is with the Media University Stuttgart.
E-mail: gerlicher@hdm-stuttgart.de

mass is reached, the web services need to be able to scale-
up immediately to stay in business. Before this threshold
is reached, providers need to focus on the business logic,
which often prevents detailed scalability considerations.

State-of-the-art Web Application Frameworks (WAFs)
are designed to abstract common functionalities needed for
the efficient implementation of web services. They focus
on the creation of application logic, data structures, data
validation, view layer presentation and session handling.
They don’t offer integrated scaling concepts that handle the
provisioning of resources, manage elastic caching or ensure
guaranteed response times. Today, web service providers
have to create custom-built systems that consider these
scalability issues manually.

The creation of such scaling systems is a very complex
matter. Hence, we proposed the introduction of Web Scaling
Frameworks (WSFs) in our recent work [1]. WSFs offload
scaling to another layer of abstraction. They take over the
responsibilities of scaling by embedding existing WAFs in
a larger system. The application logic stays on the side of
the WAFs while the scaling logic is provided by the WSF.
Fig. 1 illustrates the interplay between a WSF and multi-
ple WAFs. To utilise an existing interface, the frameworks
communicate with each other using HTTP. WSFs provide
instant scalability to common WAF applications whilst only
introducing a low overhead. To meet the performance re-
quirements at all times, the infrastructure is adapted auto-
matically. Resources are provisioned on a pay-per-use basis
to benefit from the concept of cloud computing. WSFs are
able to transparently use Software-as-a-Service (SaaS) or
machine-cluster components.

Web Scaling Frameworks: IEEE TSC Journal Paper IEEE ICC14

CONFERENCE
PAPER

IEEE TSC

JOURNAL
PAPER CONFERENCE

PAPER THESIS

April 2013 November 2014

April 2016
Web Scaling
Framework

WP1
Post-

Processing

WP2
Thesis

WP3

we’re here!

Literature
Review

Data
Collection

Analysation

Model
Adaption

Write Up

Design

Implementation

Literature
Review
Report

Datasets
Charts

Design
Documents

Program

Data
Collection

Analysation

Model
Adaption

Write Up

Design

Implementation

Datasets
Charts

Design
Documents

Program

Literature
Review

Data
Collection

Analysation

Model
Adaption

Write Up

Design

Implementation

Literature
Review
Report

Datasets
Charts

Design
Documents

Program

Data
Collection

Analysation

Transfer

Combine
Write Up

Design

Implementation

Datasets
Charts

Design
Documents

Program

Work Package 1

Web Scaling Frameworks: Pi-One Cluster

Work Package 1

Web Scaling Frameworks: IEEE TSC Journal Paper

Work Package 1

C

Q

PS

LB

S

DB

MW

C

Q

PS

LB

S

DB

MW

App
A

Visual
MV

Scaling
MS

Data
MD

Worker
MW

Control
MC

Performance
MP

METERING
Components

LIVE
Components

APPLICATION
Interfaces

COMPONENT
Interfaces

IA

Web Scaling FrameworkWSF
Cloud ProviderCloud

Web Application FrameworkWAF Cloud

CloudWAF

WSF WSF WSF

WSF WSF WSF

HTTP
IA

ACTIONS
IC

METRICS
IC

POST-PROCESSING
IA

ASYNC
Post-ProcessingSYNC

Post-Processing

Cache
C

Queue
Q

PubSub
PSLoad

Balancer

LB
Server
S

App
A

Worker
WRin

Rout

P

PS USUS

PS US PS US

SP

UA

UAPA

UA UA

UA

PA

SYNC POINT

RP RP

R

P

P P

Read Sub-SystemR
Processing Sub-SystemP

Sync/Async UpdateUA

Sync/Async PushPA

US

PS

Web Scaling Frameworks: IEEE TSC Journal Paper

Work Package 1

Web Scaling Frameworks: IEEE TSC Journal Paper

Work Package 1

Hardware vs. Software
Pi vs. Server

JavaScript vs. Native C

0.0 0.5 1.0 1.5 2.0
ncx0.6

0.7

0.8

0.9

1.0
nfx

1 5 10 50 100
cx

100

1000

104

105
fx

OCRs

In[12]:= ocr = <&
pi ' <&

js ' OCI[data[pi][js], OCIThreshold],
c ' OCI[data[pi][c], OCIThreshold]
&>,

mac ' <&
js ' OCI[data[mac][js], OCIThreshold],
c ' OCI[data[mac][c], OCIThreshold]
&>

&>

Out[12]= pi # js # {1, 26}, c # {3, 79}, mac # js # {1, 104}, c # {149, 208}

In[13]:= ocrData = <&
pi ' <&

js ' Table[{x, data[pi][js][[x]]}, Evaluate[Join[{x}, ocr[pi][js]]]],
c ' Table[{x, data[pi][c][[x]]}, Evaluate[Join[{x}, ocr[pi][c]]]]
&>,

mac ' <&
js ' Table[{x, data[mac][js][[x]]}, Evaluate[Join[{x}, ocr[mac][js]]]],
c ' Table[{x, data[mac][c][[x]]}, Evaluate[Join[{x}, ocr[mac][c]]]]
&>

&>;

Ratios

In[14]:= ratios = <&
rps ' <&

pi ' <&c2js ,> N[max[pi][c][rps] * max[pi][js][rps]] &>,
mac ,> <&c2js ,> N[max[mac][c][rps] * max[mac][js][rps]]&>,
c2c ' N[max[mac][c][rps] * max[pi][c][rps]],
js2js ' N[max[mac][js][rps] * max[pi][js][rps]]
&>,

c ' <&
pi ' <&c2js ,> N[max[pi][c][c] * max[pi][js][c]] &>,
mac ,> <&c2js ,> N[max[mac][c][c] * max[mac][js][c]]&>,
c2c ' N[max[mac][c][c] * max[pi][c][c]],
js2js ' N[max[mac][js][c] * max[pi][js][c]]
&>

&>

Out[14]= rps # pi # c2js # 10.8202,
mac # c2js # 11.1497, c2c # 40.8115, js2js # 39.6053,

c # pi # c2js # 3.03846, mac # c2js # 2., c2c # 2.63291, js2js # 4.

Results

Out[17]=

node_vs_native.nb 3

Printed by Wolfram Mathematica Student Edition

OCRs

In[12]:= ocr = <&
pi ' <&

js ' OCI[data[pi][js], OCIThreshold],
c ' OCI[data[pi][c], OCIThreshold]
&>,

mac ' <&
js ' OCI[data[mac][js], OCIThreshold],
c ' OCI[data[mac][c], OCIThreshold]
&>

&>

Out[12]= pi # js # {1, 26}, c # {3, 79}, mac # js # {1, 104}, c # {149, 208}

In[13]:= ocrData = <&
pi ' <&

js ' Table[{x, data[pi][js][[x]]}, Evaluate[Join[{x}, ocr[pi][js]]]],
c ' Table[{x, data[pi][c][[x]]}, Evaluate[Join[{x}, ocr[pi][c]]]]
&>,

mac ' <&
js ' Table[{x, data[mac][js][[x]]}, Evaluate[Join[{x}, ocr[mac][js]]]],
c ' Table[{x, data[mac][c][[x]]}, Evaluate[Join[{x}, ocr[mac][c]]]]
&>

&>;

Ratios

In[14]:= ratios = <&
rps ' <&

pi ' <&c2js ,> N[max[pi][c][rps] * max[pi][js][rps]] &>,
mac ,> <&c2js ,> N[max[mac][c][rps] * max[mac][js][rps]]&>,
c2c ' N[max[mac][c][rps] * max[pi][c][rps]],
js2js ' N[max[mac][js][rps] * max[pi][js][rps]]
&>,

c ' <&
pi ' <&c2js ,> N[max[pi][c][c] * max[pi][js][c]] &>,
mac ,> <&c2js ,> N[max[mac][c][c] * max[mac][js][c]]&>,
c2c ' N[max[mac][c][c] * max[pi][c][c]],
js2js ' N[max[mac][js][c] * max[pi][js][c]]
&>

&>

Out[14]= rps # pi # c2js # 10.8202,
mac # c2js # 11.1497, c2c # 40.8115, js2js # 39.6053,

c # pi # c2js # 3.03846, mac # c2js # 2., c2c # 2.63291, js2js # 4.

Results

Out[17]=

node_vs_native.nb 3

Printed by Wolfram Mathematica Student Edition
20 40 60 80

c

500

1000

1500

2000

2500
RPS

50 100 150 200
c

20000

40000

60000

80000

100000
RPS

Evaluation
Throughput vs. Concurrency

Web Scaling Frameworks: IEEE TSC Journal Paper

Work Package 1

Model Visualisation

Out[13]=

20 40 60 80 100
kB

0.002
0.004
0.006
0.008
0.010

s
Size Delay

20 40 60 80 100
c

2×107

4×107

6×107

8×107

1×108

s
Quadratic Network Delay

20 40 60 80 100
c

200

300

400

RFPS
Request Flow per Second

Complex Network Delay

The objective of the validation is to find out how the network influences the delay with increasing
concurrency and number of machines.

Empirical Data Import
Tests are run with m=1..20 machines pairs, where a machine pair is always the combination of a
load generator and a component machine.

In[14]:= cndDataRFPS = Import[FileNameJoin[
{NotebookDirectory[], "complex_network_delay*results,pi.json"}]];

In[15]:= cndDataRFPSNormalized = N[cndDataRFPS * Table[m, {m, 1, 20}]];

In[16]:= cndDataRFPSm = Import[FileNameJoin[
{NotebookDirectory[], "complex_network_delay*results,pi,group.json"}]];

In[17]:= cndDataCND = N[Table[Table[i, {i, 1, 50}], {m, 1, 20}] * cndDataRFPS];

In[18]:= cndDataCNDNormalized = N[cndDataCND * Table[m, {m, 1, 20}]];

Data Visualisation

Out[19]=

Total RFPS Performance

10 20 30 40 50

500

1000

1500

RFPS of m=1..20

10 20 30 40 50

20

40

60

80

100

120
Normalized RFPS of m=1..20 # m

6 evaluation.nb

Printed by Wolfram Mathematica Student Edition

Out[20]=

Isolated Complex Network Delay

10 20 30 40 50

0.05

0.10

0.15

0.20

Isolated CND of m=1..20

10 20 30 40 50

0.01

0.02

0.03

0.04

0.05
Normalized Isolated CND RFPS of m=1..20 # m

Out[21]=

Individual RFPS Performance

0 10 20 30 40 50

80
90

100
110

m=1

0 10 20 30 40 50

80
90

100
110

m=2

0 10 20 30 40 50

60
70
80
90

100
m=3

0 10 20 30 40 50

60
70
80
90

m=4

0 10 20 30 40 50

60
70
80
90

m=5

0 10 20 30 40 50

50
60
70
80
90

m=6

10 20 30 40 50

20
40
60
80

m=7

0 10 20 30 40 50

50
60
70
80
90

m=8

0 10 20 30 40 50

50
60
70
80
90

m=9

0 10 20 30 40 50

50
60
70
80
90

m=10

10 20 30 40 50

20
40
60
80

m=11

10 20 30 40 50

20
40
60
80

m=12

0 10 20 30 40 50

50
60
70
80
90

m=13

0 10 20 30 40 50

50
60
70
80
90

m=14

10 20 30 40 50

20
40
60
80

m=15

10 20 30 40 50

20
40
60
80

m=16

10 20 30 40 50

20
40
60
80

m=17

10 20 30 40 50

20
40
60
80

m=18

10 20 30 40 50

20
40
60
80

m=19

10 20 30 40 50

20
40
60
80

m=20

Isolation
The complex network delay describes the delay that is added by the network stack of a component
with respect to concurrency and machines. In the first step, the complex network delay is isolated
from the RFPS by setting the size and process delay to zero:

evaluation.nb 7

Printed by Wolfram Mathematica Student Edition

fopt,x

copt,xclow,x chigh,x

q fopt,x

10 20 30 40 50
cx

20

40

60

80

100

120
fx

frange,x

fmean,x

Measured
Optimal
Concurrency Range

Network Delay
Linear vs. Quadratic

Web Scaling Frameworks: IEEE TSC Journal Paper

Work Package 1

10 20 30 40 50
cx

0.2

0.4

0.6

0.8

1.0

ndn,x

ndn,x,range

Data ndn,x,quadratic

Model ndn,x,quadratic

Data ndn,x,linear

Model ndn,x,linear

Model Visualisation

Out[41]=

Quadratic Network Delay Model blue vs. Quadratic Network Delay Data orange

10 20 30 40 50
c

0.1
0.2
0.3
0.4
0.5
0.6
0.7

d
m 1

10 20 30 40 50
c

0.05
0.10
0.15
0.20
0.25
0.30

d
m 2

10 20 30 40 50
c

0.05
0.10
0.15
0.20
0.25
0.30

d
m 3

10 20 30 40 50
c

0.05
0.10
0.15
0.20
0.25

d
m 4

10 20 30 40 50
c

0.05
0.10
0.15
0.20

d
m 5

10 20 30 40 50
c

0.05
0.10
0.15

d
m 6

10 20 30 40 50
c

0.02
0.04
0.06
0.08
0.10
0.12
0.14

d
m 7

10 20 30 40 50
c

0.02
0.04
0.06
0.08
0.10
0.12

d
m 8

10 20 30 40 50
c

0.02
0.04
0.06
0.08
0.10

d
m 9

10 20 30 40 50
c

0.02
0.04
0.06
0.08
0.10

d
m 10

10 20 30 40 50
c

0.02
0.04
0.06
0.08

d
m 11

10 20 30 40 50
c

0.02
0.04
0.06
0.08

d
m 12

10 20 30 40 50
c

0.02
0.04
0.06
0.08

d
m 13

10 20 30 40 50
c

0.01
0.02
0.03
0.04
0.05
0.06
0.07

d
m 14

10 20 30 40 50
c

0.01
0.02
0.03
0.04
0.05
0.06
0.07

d
m 15

10 20 30 40 50
c

0.01
0.02
0.03
0.04
0.05
0.06

d
m 16

10 20 30 40 50
c

0.01
0.02
0.03
0.04
0.05
0.06

d
m 17

10 20 30 40 50
c

0.01
0.02
0.03
0.04
0.05

d
m 18

10 20 30 40 50
c

0.01
0.02
0.03
0.04
0.05

d
m 19

10 20 30 40 50
c

0.01
0.02
0.03
0.04
0.05

d
m 20

Out[42]=

Residual Error Analysis

Size Delay

The size delay describes the delay that is added by different response sizes. The objective is to
determine a constant factor that serves as slope (delay added per kilobyte).

10 evaluation.nb

Printed by Wolfram Mathematica Student Edition

Model Visualisation

Out[41]=

Quadratic Network Delay Model (blue) vs. Quadratic Network Delay Data (orange)

10 20 30 40 50
c

0.1
0.2
0.3
0.4
0.5
0.6
0.7

s
m=1

10 20 30 40 50
c

0.05
0.10
0.15
0.20
0.25
0.30

s
m=2

10 20 30 40 50
c

0.05
0.10
0.15
0.20
0.25
0.30

s
m=3

10 20 30 40 50
c

0.05
0.10
0.15
0.20
0.25

s
m=4

10 20 30 40 50
c

0.05
0.10
0.15
0.20

s
m=5

10 20 30 40 50
c

0.05
0.10
0.15

s
m=6

10 20 30 40 50
c

0.02
0.04
0.06
0.08
0.10
0.12
0.14

s
m=7

10 20 30 40 50
c

0.02
0.04
0.06
0.08
0.10
0.12

s
m=8

10 20 30 40 50
c

0.02
0.04
0.06
0.08
0.10

s
m=9

10 20 30 40 50
c

0.02
0.04
0.06
0.08
0.10

s
m=10

10 20 30 40 50
c

0.02
0.04
0.06
0.08

s
m=11

10 20 30 40 50
c

0.02
0.04
0.06
0.08

s
m=12

10 20 30 40 50
c

0.02
0.04
0.06
0.08

s
m=13

10 20 30 40 50
c

0.01
0.02
0.03
0.04
0.05
0.06
0.07

s
m=14

10 20 30 40 50
c

0.01
0.02
0.03
0.04
0.05
0.06
0.07

s
m=15

10 20 30 40 50
c

0.01
0.02
0.03
0.04
0.05
0.06

s
m=16

10 20 30 40 50
c

0.01
0.02
0.03
0.04
0.05
0.06

s
m=17

10 20 30 40 50
c

0.01
0.02
0.03
0.04
0.05

s
m=18

10 20 30 40 50
c

0.01
0.02
0.03
0.04
0.05

s
m=19

10 20 30 40 50
c

0.01
0.02
0.03
0.04
0.05

s
m=20

Out[42]=

Residual (Error) Analysis

Size Delay

The size delay describes the delay that is added by different response sizes. The objective is to
determine a constant factor that serves as slope (delay added per kilobyte).

10 evaluation.nb

Printed by Wolfram Mathematica Student Edition

In[63]:= Quantity[rmsePredictionFit ' 100, "Percent"]

Out[63]=
97.5391%

The errors are roughly normal distributed with the parameters:

In[64]:= errorDistributionParams =
FindDistributionParameters[Flatten[residuals], NormalDistribution[μ, σ]]

Out[64]=
{μ * 0.000219601, σ * 0.00128243}

In[65]:= errorDistribution = NormalDistribution[μ, σ] *. errorDistributionParams

Out[65]= NormalDistribution[0.000219601, 0.00128243]

Model Visualisation

Out[66]=

SD Model (blue) vs. SD Data (orange)

100 200 300 400

0.01

0.02

0.03

0.04

0.05

Out[67]=

Residual (Error) Analysis

Process Delay

The process delay is defined as the sum of all processing delays. In the case of a cache component
that guarantees a constant lookup time of O(1) the processing delay can be simply measured. In the
special case of the worker, the processing delay consists of the action delay that is needed to
handle a request plus the time it takes to finish the synchronous post-processing:

evaluation.nb 13

Printed by Wolfram Mathematica Student Edition

In[63]:= Quantity[rmsePredictionFit ' 100, "Percent"]

Out[63]=
97.5391%

The errors are roughly normal distributed with the parameters:

In[64]:= errorDistributionParams =
FindDistributionParameters[Flatten[residuals], NormalDistribution[μ, σ]]

Out[64]=
{μ * 0.000219601, σ * 0.00128243}

In[65]:= errorDistribution = NormalDistribution[μ, σ] *. errorDistributionParams

Out[65]= NormalDistribution[0.000219601, 0.00128243]

Model Visualisation

Out[66]=

SD Model (blue) vs. SD Data (orange)

100 200 300 400

0.01

0.02

0.03

0.04

0.05

Out[67]=

Residual (Error) Analysis

Process Delay

The process delay is defined as the sum of all processing delays. In the case of a cache component
that guarantees a constant lookup time of O(1) the processing delay can be simply measured. In the
special case of the worker, the processing delay consists of the action delay that is needed to
handle a request plus the time it takes to finish the synchronous post-processing:

evaluation.nb 13

Printed by Wolfram Mathematica Student Edition

VN
VS

Web Scaling Frameworks: IEEE TSC Journal Paper

Work Package 1

63%
Ma
chi
ne
Re
du
ctio
n (R

AM
R)DataN

MT ,N

MR,N

DataS
MT ,S

MR,S

100 200 300 400 500 600
F

5

10

15

20

MT

Perfsoccer

Perfsocial

Perftrip

Fitsoccer

Fitsocial

Fittrip

0 20 40 60 80 100
%

VN VS MRO MRP RAMR

Evaluation
Normal Version vs. Scaled Version

Work Packages & Publications

IEEE ICC14

CONFERENCE
PAPER

IEEE TSC

JOURNAL
PAPER CONFERENCE

PAPER THESIS

April 2013 November 2014

April 2016
Web Scaling
Framework

WP1
Post-

Processing

WP2
Thesis

WP3

we’re here!

Literature
Review

Data
Collection

Analysation

Model
Adaption

Write Up

Design

Implementation

Literature
Review
Report

Datasets
Charts

Design
Documents

Program

Data
Collection

Analysation

Model
Adaption

Write Up

Design

Implementation

Datasets
Charts

Design
Documents

Program

Literature
Review

Data
Collection

Analysation

Model
Adaption

Write Up

Design

Implementation

Literature
Review
Report

Datasets
Charts

Design
Documents

Program

Data
Collection

Analysation

Transfer

Combine
Write Up

Design

Implementation

Datasets
Charts

Design
Documents

Program

Project Roadmap

Reactive/Proactive Post-Processing: Conference Paper
IEEE ICC14

CONFERENCE
PAPER

IEEE TSC

JOURNAL
PAPER CONFERENCE

PAPER THESIS

April 2013 November 2014

April 2016
Web Scaling
Framework

WP1
Post-

Processing

WP2
Thesis

WP3

we’re here!

Literature
Review

Data
Collection

Analysation

Model
Adaption

Write Up

Design

Implementation

Literature
Review
Report

Datasets
Charts

Design
Documents

Program

Data
Collection

Analysation

Model
Adaption

Write Up

Design

Implementation

Datasets
Charts

Design
Documents

Program

Literature
Review

Data
Collection

Analysation

Model
Adaption

Write Up

Design

Implementation

Literature
Review
Report

Datasets
Charts

Design
Documents

Program

Data
Collection

Analysation

Transfer

Combine
Write Up

Design

Implementation

Datasets
Charts

Design
Documents

Program

Work Package 2

ASYNC
Post-ProcessingSYNC

Post-Processing

Cache
C

Queue
Q

PubSub
PSLoad

Balancer

LB
Server
S

App
A

Worker
WRin

Rout

P

PS USUS

PS US PS US

SP

UA

UAPA

UA UA

UA

PA

SYNC POINT

RP RP

R

P

P P

Read Sub-SystemR
Processing Sub-SystemP

Sync/Async UpdateUA

Sync/Async PushPA

US

PS

Next focus:
Find data structures and algorithms that allow a fast,
distributed and parallel processing of dependencies

Reactive/Proactive Post-Processing: Conference Paper

Work Package 2

Dependency Analysis
Data Structures

Declaration
Generation

Visualisation
Link Analysis

Reactive/Proactive Post-Processing: Conference Paper

Work Package 2

Pre/Post-Processing
Synchronous vs. Asynchronous
Optimisation
Parallelisation
Fragmentation
Eventual Cache

Web Scaling Frameworks: Thesis
IEEE ICC14

CONFERENCE
PAPER

IEEE TSC

JOURNAL
PAPER CONFERENCE

PAPER THESIS

April 2013 November 2014

April 2016
Web Scaling
Framework

WP1
Post-

Processing

WP2
Thesis

WP3

we’re here!

Literature
Review

Data
Collection

Analysation

Model
Adaption

Write Up

Design

Implementation

Literature
Review
Report

Datasets
Charts

Design
Documents

Program

Data
Collection

Analysation

Model
Adaption

Write Up

Design

Implementation

Datasets
Charts

Design
Documents

Program

Literature
Review

Data
Collection

Analysation

Model
Adaption

Write Up

Design

Implementation

Literature
Review
Report

Datasets
Charts

Design
Documents

Program

Data
Collection

Analysation

Transfer

Combine
Write Up

Design

Implementation

Datasets
Charts

Design
Documents

Program

Work Package 3

Thesis focus:
Create and evaluate a full-stack
Web Scaling Framework with dependency declaration
and optimised post-processing algorithms

Web Scaling Frameworks
PhD Transfer Event

Thomas Fankhauser
Qi Wang

Christos Grecos
Xinheng Wang

Ansgar Gerlicher

