
Thomas Fankhauser, Qi Wang,
Ansgar Gerlicher, Christos Grecos, Xinheng Wang

University of the West of Scotland
Stuttgart Media University

!

fankhauser@hdm-stuttgart.de

A novel class of frameworks for scalable
web services in cloud environments

web scaling frameworks

mailto:fankhauser@hdm-stuttgart.de

background

background

traffic

background

traffic

challenges

challenges

+ application logic vs. hosting logic
 how much does the app need to know?

+ modularized and distributed web applications
 who manages the distribution components?

+ scaling considerations
 when to implement scaling?

+ performance prediction
 how much of what components are / would be needed?

scaling

queueing

caching

events

replication

sharing

error handling

There is a lot of relevant research for each component
+ but, we propose to combine those
 complementary components to a
 predictable, composed system

+ general concept
 web scaling frameworks

+ prototype
 mathematical model and empirical data

web scaling frameworks

web scaling frameworks

user interface

data modelvalidation

navigation

logic

scaling

queueingcaching

events

replication

sharing
error handling

web scaling frameworks

web scaling
framework

web application
framework

http

web scaling frameworks

+ predict and manage performance
 monitor and control

+ take over scaling
 separate application logic from hosting logic

+ connect to existing web application frameworks
 http as interface, not a replacement

prototype

prototype

load balancer cache

queue

events

server worker

app

component clusters

prototype

load balancer cache

queue

events

server worker

app

processing sub-system

+ modifying requests
 POST, PUT, DELETE, …

prototype

load balancer cache

queue

events

server worker

app

read sub-system

+ read-only requests
 GET, HEAD

Caching everything is impossible
+ but, for most applications it isn’t…

+ fast cloud storage is available
 storage is cheaper than compute units

+ post-processing
 mechanism that keeps resource dependencies updated

+ application design matters
 design for cacheability

prototype
post-processing

+ worker and app are on the same host
 connect web scaling framework and web application framework

worker

app

+ application declares resource dependencies
 synchronous and asynchronous dependencies

+ worker ensures updates of dependencies
 optimises and resolves update tree

+ worker offers interface to app
 register dependency, push content, …

prototype
post-processing example

+ app: create blog post dependencies
 synchronous: /index
 asynchronous: /sitemap

+ worker: POST /posts
 1. sends request to app
 2. receives and stores sync. and async. dependencies
 3. pushes updates to the cache
 4. recursively resolves sync. dependencies
 5. forwards response to event system … client
 6. recursively resolves async. dependencies

worker

app

evaluation

evaluation

+ scaled version vs. normal version
 web scaling framework + web application framework vs. web application framework

+ mathematical model
 component delays and sub-systems

+ cache / processing ratio (CPR)
 traffic distribution ratio between 1 and 0

GET, HEAD POST, PUT, …
1.0 0.5 0

cached processed

+ empirical data collection
 single machine scope and multi-machine scope

evaluation
+ mathematical model: analytical prediction
 normal version does not consider cpr

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
eq

ue
st

s
/ S

ec
on

d
(R

PS
)

Cache / Processing Ratio (CPR)

c = 100
u = 10
s = 100
da = 1.000
dn = 0.010
ds = 0.001
df = 0.050

normal
scaled
better
worse

BEPCPR = 0.910

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
eq

ue
st

s
/ S

ec
on

d
(R

PS
)

Cache / Processing Ratio (CPR)

c = 100
u = 0
s = 25
da = 1.000
dn = 0.010
ds = 0.001
df = 0.050

normal
scaled
better
worse

BEPCPR = 0.048

worst case best case

 0

 20

 40

 60

 80

 100

 120

 140

 160

0 200k 400k 600k 800k 1M

To
ta

l M
ac

hi
ne

s
(M

)

Maximum Request Flow per Second (RFPSmax)

MNMSMReg,NMReg,S

CPR = 0.7
dn,min = 0.00
dn,gain = 0.01
s = 50
ds = 0.001
c = 6000
cn,max = 8000

dLB = 0.0001
dQ = 0.001
dPS = 0.001
dC = 0.001
dS = 0.001
dw = 0.5
da = 0.5

44% fewer machines

on a single machine on multiple machines
all components on same host

evaluation
+ empirical data collection
 normal version vs. scaled version - single machine scope

+ 81 parameter tuples
 cpr, da, s, u

97.6% prediction fit

Vn: normal version vs. Vs: scaled version model vs. data

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

-400 -200 0 200 400 600

Fr
eq

ue
nc

y

6 Requests per Second (RPSP-RPSM)

RMSE = 232

(Predicted - Measured) RPS

+ hypothesis: In 33% Vs performs better than Vn
 accepted with a result of 37%

+ expected the cpr to be highly influential
 Vs expected to be better for tuples where CPR = 1.0
 Vn expected to be better for tuples where CPR = (0.5, 0.0)

CPR = (1.0, 0.5, 0.0)
da = (0.0, 0.5, 1.0)

s = (25,50,100)
u = (0,5,10)

in progress

in progress

+ empirical data collection
 multi-machine cloud scope
 raspberry pi cluster of 42 machines

+ further implementations
 web scaling frameworks

thank you!

Thomas Fankhauser, Qi Wang,
Ansgar Gerlicher, Christos Grecos, Xinheng Wang

University of the West of Scotland
Stuttgart Media University

!

fankhauser@hdm-stuttgart.de

A novel class of frameworks for scalable
web services in cloud environments

web scaling frameworks
thank you!

mailto:fankhauser@hdm-stuttgart.de

