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+ application logic vs. hosting logic 
     how much does the app need to know?

+ modularized and distributed web applications 
     who manages the distribution components?

+ scaling considerations 
     when to implement scaling?

+ performance prediction 
     how much of what components are / would be needed?

scaling
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There is a lot of relevant research for each component
+ but, we propose to combine those  
   complementary components to a  
   predictable, composed system

+ general concept 
     web scaling frameworks

+ prototype 
     mathematical model and empirical data
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web scaling  
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web scaling frameworks

+ predict and manage performance 
     monitor and control

+ take over scaling 
     separate application logic from hosting logic

+ connect to existing web application frameworks 
     http as interface, not a replacement
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processing sub-system 

+ modifying requests 
     POST, PUT, DELETE, …



prototype

load balancer cache

queue

events

server worker

app

read sub-system 

+ read-only requests 
     GET, HEAD



Caching everything is impossible
+ but, for most applications it isn’t…

+ fast cloud storage is available 
     storage is cheaper than compute units

+ post-processing 
     mechanism that keeps resource dependencies updated

+ application design matters 
     design for cacheability



prototype
post-processing 

+ worker and app are on the same host 
     connect web scaling framework and web application framework

worker

app

+ application declares resource dependencies 
     synchronous and asynchronous dependencies

+ worker ensures updates of dependencies 
     optimises and resolves update tree

+ worker offers interface to app 
     register dependency, push content, …



prototype
post-processing example 

+ app: create blog post dependencies 
     synchronous: /index 
     asynchronous: /sitemap

+ worker: POST /posts 
     1. sends request to app 
     2. receives and stores sync. and async. dependencies 
     3. pushes updates to the cache 
     4. recursively resolves sync. dependencies 
     5. forwards response to event system … client 
     6. recursively resolves async. dependencies

worker

app



evaluation



evaluation

+ scaled version vs. normal version 
     web scaling framework + web application framework vs. web application framework

+ mathematical model 
     component delays and sub-systems

+ cache / processing ratio (CPR) 
     traffic distribution ratio between 1 and 0

GET, HEAD POST, PUT, …
1.0                       0.5                      0

cached processed

+ empirical data collection 
     single machine scope and multi-machine scope



evaluation
+ mathematical model: analytical prediction 
     normal version does not consider cpr 
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on a single machine on multiple machines 
all components on same host



evaluation
+ empirical data collection 
     normal version vs. scaled version - single machine scope

+ 81 parameter tuples 
    cpr, da, s, u

97.6% prediction fit 

Vn: normal version vs. Vs: scaled version model vs. data 

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

-400 -200  0  200  400  600

Fr
eq

ue
nc

y

6 Requests per Second (RPSP-RPSM)

RMSE = 232

(Predicted - Measured) RPS

+ hypothesis: In 33% Vs performs better than Vn 
    accepted with a result of 37%

+ expected the cpr to be highly influential 
    Vs expected to be better for tuples where CPR = 1.0 
    Vn expected to be better for tuples where CPR = (0.5, 0.0)

CPR = (1.0, 0.5, 0.0) 
da = (0.0, 0.5, 1.0) 

s = (25,50,100) 
u = (0,5,10)
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+ empirical data collection 
     multi-machine cloud scope 
     raspberry pi cluster of 42 machines 

+ further implementations 
     web scaling frameworks 
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