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Abstract—Nowadays, web services have to accommodate a significant and ever-increasing number of requests due to high
interactivity of current applications. Although the built-in elasticity offered by a cloud can mitigate this challenge, it is highly desirable
that applications can be built in a scalable fashion. State-of-the-art Web Application Frameworks (WAFs) focus on the creation of
application logic and do not offer integrated cloud scaling concepts. As the creation of such scaling systems is very complex, we
proposed in our recent work the concept of Web Scaling Frameworks (WSFs) in order to offload scaling to another layer of abstraction.
In this work, a detailed design for WSFs including necessary modules, interfaces and components is presented. A mathematical model
used for performance rating is evaluated and enhanced on a computing cluster of 42 machines. Traffic traces from over 25 million
real-world applications are analysed and evaluated on the cluster to compare the WSF performance with a traditional scaling approach.
The results show that the application of WSFs can substantially reduce the number of total machines needed for three representative
real-world applications — a social network, a trip planner and the FIFA World Cup 98 website — by 32%, 63% and 92%, respectively.
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1 INTRODUCTION

THE demands for modern scalable web services are in-
creasing rapidly due to the soaring social nature of the

web and the upsurge of the total number of mobile devices.
Web services have to deal with a high level of interactivity in
applications, which in turn introduces enormous amounts
of requests. Static websites are replaced by dynamic and
highly interactive applications. For instance, TV shows de-
ploy apps that allow users to influence the course of the
show, advertisements are brought to customers only if they
remain in the vicinity of advertised target locations, smart
sensors deliver data for all kinds of metrics which users
see on their mobile devices, and cars communicate traffic
situations, report traffic jams and find intelligent routes
based on live data.

1.1 Motivation

The above scenarios introduce new challenges to web ser-
vice providers and developers. As single-server systems are
not able to handle the increased load, applications need to
be built in a scalable fashion. Requests have to be balanced
over all available machines, resources need to be shared
without conflicting versions, distributed transactions have
to be processed in a fault tolerant manner, and the number
of machines has to be adapted to highly dynamic traffic
situations. Typically, web service providers need to reach
a critical mass of users to be commercially sustainable. If
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the critical mass is reached, the web services need to be
able to scale up immediately to stay in business. Before this
threshold is reached, providers need to focus on the business
logic, which often prevents detailed scalability considera-
tions. State-of-the-art Web Application Frameworks (WAFs)
are designed to abstract common functionalities needed for
the efficient implementation of web services. They focus
on the creation of application logic, data structures, data
validation, view layer presentation and session handling.
They do not offer integrated scaling concepts that handle
the provisioning of resources, employ optimised caching
strategies or ensure guaranteed response times. Today, web
service providers have to create custom-built systems that
consider these scalability issues manually.

1.2 Background
As the creation of such scaling systems is a very complex
matter, we proposed Web Scaling Frameworks (WSFs) in
our recent work [1]. We proposed that WSFs take over the
responsibilities of scaling by embedding existing WAFs in
a larger system. In [1] we have shown empirically that
the application of a WSF can triple the request throughput
performance of a single machine. We were also able to
show analytically that we can reduce the number of total
machines by 44% in certain cases. However, the model was
not evaluated on multiple machines nor with real-world
traffic traces. Moreover, the traditional app version in the
evaluation did not use a cache and the analytical model was
not fully developed. In addition, a detailed design of WSFs
was not given.

1.3 Contribution
In this work, we specify a detailed design of WSFs including
necessary modules, interfaces and the composition of com-
ponents, where modules define the core functionalities of a
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TABLE 1
Categorisation of Related Work

Scalability (2.1) References
Framework or Platform this, [2], [3], [4]
Modelling this, [4], [5], [6], [7], [8]
Elastic Computing [4], [5], [6], [7], [8], [9], [10]
Caching (2.2) References
Strategy this, [9], [11], [12], [13]
Policies this, [9], [10]
Architecture (2.3) References
Pattern this, [14], [15], [16], [17], [18]
Methodology this, [14], [15], [16], [17], [18], [19], [20]
PaaS Model this, [2], [14]
SaaS Model [5], [14]

WSF and are connected to components through interfaces.
Firstly, we significantly enhance our mathematical model
presented in [1] and evaluate it on a cloud computing
cluster. The network delay is remodeled using a linear or
quadratic form, which improves the accuracy and eliminates
a parameter that had to be estimated from a series of
elaborate tests in [1]. The linear total machines regression
is generalised for the WSF and WAF-only version, which
allows approximating the performance of both versions
for comparison. A performance-concurrency-width triplet is
composed that introduces a new way for comparing perfor-
mance between components and an equation for the break-
even point of the post-processing delay is presented, which
allows estimating the available time for post-processing.
Secondly, for improved web service scalability, we highlight
a set of optimisation schemes including a caching and post-
processing strategy, a novel request flow routing mecha-
nism, an optimal concurrency range calculation algorithm,
and optimisations for highly dynamic content. Finally, in
the evaluation, we provide both application versions with
caches to represent real scenarios more precisely. We evalu-
ate an extended version of the model with 42 machines and
assess the performance using parameters extracted from a
total of 25 million trip planner, social network and soccer
worldcup traces.

The remainder of the paper is organised as follows:
Section 2 summarises the results of the literature review
of related work. Section 3 illustrates the general concept of
WSFs with modules, interfaces and components. Section 4
derives a concrete prototype of a WSF, whilst Section 5 de-
velops the models for the prototype and Section 6 evaluates
the models with a cloud cluster. Section 7 outlines the results
and conclusions and gives a perspective on future research.

2 RELATED WORK

We reviewed and classified related work into three cate-
gories (Table 1) defined by the design goals of our proposed
WSFs: Work in the Scalability category deals with the cre-
ation and modelling of scalable frameworks and platforms.
The Caching category deals with eviction methods and work
related to our caching strategy and the Cloud Architecture
Patterns category deals with work proposing general cloud
taxonomies, architectures and composition patterns.

2.1 Scalability
2.1.1 Platforms and Frameworks
The AppScale Cloud Platform [2] is a distributed software
system that implements a Platform-as-a-Service (PaaS) that
allows deployment of cloud applications. The TwoSpot [3]
PaaS enables hosting multiple, sandboxed Java compatible
applications and has a focus on the prevention of vendor
lock-in. Unlike the WSF we propose, both platforms do not
suggest a caching strategy or service composition architec-
ture, where the performance of each service (component)
can be calculated with respect to a targeted load.

2.1.2 Modelling
The work in [5] establishes a formal measure for under-
and over-provisioning of virtualised resources in cloud
infrastructures specifically for Software-as-a-Service (SaaS)
platform deployments and proposes new resource alloca-
tion mechanisms based on tenant isolation, VM instance
allocation and load balancing. The proposed mechanisms
are specifically optimised for SaaSs, whereas our proposed
WSF is a PaaS middleware [14] that implements a general
web service framework. An application that is developed
using our proposed WSF does not necessarily have multiple
tenants (customers). Thus, itesm-cloud’s [5] balancing of the
Virtual Machine (VM) load that is based on the tenants
of a SaaS platform is not applicable for our proposed
framework. In [6], the authors propose an optimal VM-
level auto-scaling scheme with cost-latency trade-off. The
scheme predicts the number of requests based on history
data and then gives instructions for service provisioning,
but does not propose a service composition architecture
or caching strategy. In [4], the authors model an elastic
scaling approach that makes use of cost-aware criteria to
detect and analyse the bottlenecks within multi-tier cloud-
based applications. The approach is based on monitors that
measure the current workload and scale up or down based
on the performance, however it does not employ a caching
strategy or application performance profile for optimal load
targeting we propose in Section 5.

2.1.3 Elastic Computing
The authors in [8] provide an overview of the key concepts
of stream processing in databases, with special focus on
adaptivity and cloud-based elasticity. The processing mech-
anisms we propose in this work (Section 4) operate on a
stream of events (requests) that are processed by a process-
ing agent (worker) and delivered to a client. The work [8]
however does not employ a caching strategy, performance
model or special composition of components. In [7], the au-
thors introduce novel ideas on testing for elastic computing
systems, such as impact, fatigue and shear testing. The auto-
scaling capabilities needed for such elastic systems are part
of the self-adaptive systems field where [18] introduces an
architectural blueprint for autonomic computing. The WSF
we propose does not employ algorithms for elastic auto-
scaling, though this is subject to future work.

2.2 Caching
2.2.1 Strategies
The authors in [9] design and evaluate a caching policy that
minimises the cost of a cloud-based system by taking into
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account the frequency of consumption of an item and the
cloud cost model. As prices for cloud storage are expected
to continue to drop [11], [12], we expect that the storage of
resources will be cheaper than the recurrent processing on a
cache miss. Hence, in this work we propose to fully utilise
caching and thereby maximise scalability, performance pre-
dictability and response times.

2.2.2 Policies
The eviction of cache objects is performed to minimise the
cache size and cost. It is either based on timeouts [9], access
frequency [9] or access patterns [10] that are based on machine-
learning algorithms. One major issue of the eviction is
that on arrival of a request it is uncertain if the requested
resource is cached (hit) or needs to be recomputed (miss).
Thus, provisioning algorithms need to employ the concept
of a hit-miss probability to calculate performance and can
not guarantee response times for cacheable resources. Due
to the fast decreasing in the price of caches, we propose
to cache all available resources and abandon cache evic-
tion. This allows strictly isolating cached and uncached
requests in the performance model yet requires a special
post-processing of requests to be outlined in Section 4.

2.3 Cloud Architecture Patterns

In their composite cloud patterns [14], the authors propose
a two-tier and three-tier application pattern. The composition
we propose in this work engages with requests before they
arrive at an application, hence applications can implement
both patterns with a modified request flow. A detailed
explanation of the differences is given in Section 4. The
microservice architectural style [15], [16] is an approach to
developing a single application as a suite of small services
that communicate through lightweight mechanisms such as
an HTTP resource API. Our proposed WSF is designed to
compose multiple small services into a single web applica-
tion, so it encourages the use of the microservice architecture
pattern. The Command Query Responsibility Segregation
(CQRS) [17], [20] is a pattern to split the conceptual repre-
sentation of a domain into separate models for update and
display. In this work we follow the pattern by creating sep-
arate request flow sub-systems for queries and commands.
Further details are given in Section 4.

3 CONCEPTUAL ARCHITECTURE

The WSF architecture we propose is an abstract concept that
is valid for all implementations of WSFs. In the subsequent
section we give an example for an implementation with a
proposed prototype.

3.1 Modules

As shown in Fig. 1 (a), a WSF is a program that is hosted
by a cloud-provider in production, or on a local machine
for development. Our requirements specification divides the
framework-functionalities into six modules, which are listed
in Table 2 for overview.

Together with the provision interface, the provision mod-
ule MP implements the provider adapter cloud application

TABLE 2
Conceptual Framework Modules, Interfaces and Parameters

Module Description
MP : Provision Manages the component topology and provi-

sions machines on different cloud-providers.
MM : Metrics Measures the performance of each component

as input to the performance model.
MS : Storage Stores the performance metrics for scaling de-

cisions and parameters.
ML: Logic Decides provisioning of components based on

performance metrics and parameters.
MI : Interface A graphical user interface or API to manage

parameters.
Interface Description
IC : Component
Provision Describes how the component topology is cre-

ated and maintained.
Metric Details what metrics a component needs to

report in order to be scaled.
IA: Application
HTTP The application is required to respond to HTTP

requests.
Resources Enlists the methods an application needs to

keep its resources up-to-date in the cache.
Parameters Description
Component Are metrics collected for each component and

used for provisioning.
System Parameters that affect the system wide scaling

algorithms.
Traffic Describe the performance goals of the overall

system.

pattern [14]. The module is concerned with the manage-
ment of cloud-provided components that includes the ex-
ecution of auto-scaling and component composition. To
simplify provisioning, we propose compliance to TOSCA
[21] or the deployment of Docker containers [22] to cloud-
provided docker runtimes that are offered by multiple cloud
providers including Amazon’s Container Service ECS [23]
and Google’s Container Service [24].

In order to monitor and calculate the current overall
system performance, the metrics module MM along with
the metrics interface is responsible for collecting performance
parameters from the components. Existing monitoring solu-
tions exist, although they are vendor-specific as e.g. Ama-
zon’s CloudWatch [23] or Google’s Cloud Monitor [24].
Hence, we propose to implement a custom metrics module
until a standardised monitoring approach emerges. The
performance model we develop in this work is solely based
on delays that are influenced by the network, processing
time, request size and concurrency for each component.
We propose to collect these component-parameters using a
second graph of components, the metrics components, which
is completely decoupled from the graph of components
that processes the production requests. The metrics module
frequently executes a series of tests against this metrics
components to determine the current values for each of the
component-parameters. The metrics interface details exactly
the component-parameters that are highlighted explicitly in
the modelling section.

Each collection of metrics for each component is stored
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Fig. 1. Architecture overview of the proposed WSF that manages multiple components and applications hosted by different cloud providers.
(a) illustrates the modules and interfaces of a WSF where the white arrows denote the data flow. (b-h) show the flow of a request through
the components where black is the request and grey is the response. (e) highlights the embedding of applications into worker components for
processing. (f) illustrates the resource update from the worker to the cache where the blue arrows denote the data flow. The novel routing scheme
splits traffic at (c) into processing sub-system (LB,S,Q,W,A,W,PS,S,LB) and read sub-system (LB,S,C,S,LB).

in the storage module MS which can be a database of any
form.

The logic module ML is responsible for scaling decisions
and thereby implements the elasticity management process
cloud application pattern [14]. Based on metrics stored in
the storage module and system-parameters that e.g. define the
aggressiveness of auto-scaling, the logic module communi-
cates its decisions to the provision module for execution.

The interface module MI is an optional module we pro-
pose to provide feedback and control to the user. It can
offer the component-parameters and system-parameters as
a graphical user interface (admin web-console) or provide
an API for machine-controlled access.

To compose multiple applications that are orchestrated
by a WSF, the worker module MW (Figure. 1 (e)) is responsible
for processing requests with the help of an application.
Based on metrics from the storage module and metrics the
worker collects for its embedded application, it handles
the request throttling, resolves and executes the updates of
dependencies and pushes content to the cache.

3.2 Interfaces
Figure. 1 (a) highlights how a WSF is connected to compo-
nents and applications it manages.

We propose to define component and application interfaces
as communication abstractions. In Table 2 and the previous
section we highlighted the provision and metrics interface for
components as they are tightly coupled with their corre-
sponding modules.

Application interfaces define how a WSF communicates
with its applications or microservices [15] that are created
using a WAF. We propose to use standard HTTP requests for
communication, as every WAF used to create an application
has to support HTTP by the definition of a web service.

In order to decouple the cache access and resource man-
agement from the application, we propose the worker mod-
ule to implement a resources interface. The application can
use this interface to communicate with the worker module.
For the caching strategy we propose in our prototype, the
resources interface consists of the following methods:

• pushCache(keys, values): Pushes resource contents
as values to the respective keys in the cache

• deleteCache(keys): Deletes cache resources by their
keys

• syncUpdate(keys): Makes the worker request the
specified keys before the current response is returned

• asyncUpdate(keys): Makes the worker request the
specified keys without timing constrains

3.3 Parameters

We propose to categorise the parameters that describe
the state and influence the behaviour of all WSFs into
component-, system- and traffic-parameters as illustrated in Ta-
ble 2. Component-parameters describe the metrics that are
collected for each component, respectively. In the prototype
we present in this work, the parameters are the different
delays needed to calculate the performance of each com-
ponent and are described in the metrics interface. System-
parameters influence the overall behaviour of a WSF and
are used as input to scaling-algorithms. They can influence
the sensitivity of scaling, ensure the compliance to a max-
imum budget or set constraints regarding the service-level
agreements. However, the prototype we propose does not
currently employ any system-specific parameters as this is
subject to future work. Traffic-parameters characterise the
performance goal of a system, such as the total requests it
can handle per second, the maximum number of concurrent
requests or the maximum time that can pass between a
request and a response. In this work, we focus on the total
requests a system can handle per second and the maximum
number of concurrent users.

3.4 Components

Components are individually scalable services from cloud
offerings [14], or self-managed services running on
Infrastructure-as-a-Service (IaaS). In Fig. 1 (b-h), we illustrate
the components we use for our prototype. We propose
these components as a minimal set of components based
on recent research on cloud application patterns [14]. Using
an exemplary provisioning setup with Docker containers
[22], a component is specified by a Dockerfile which describes
the build process for the container including the operating
system, internal environment and applications such as a
cache, worker or queue. The provision module can easily
execute scaling by launching multiple containers in their
respective container service.
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3.5 Request Flow Routing

The composition of components and routing of requests
is specific to each WSF. Following the Docker example,
containers can be linked to form a topology for component
composition and routing. One major design goal for WSFs
is to implement efficient routing of requests. In Section 4
we propose a novel request flow scheme that optimises
performance and enhances scalability by minimising the
request flow graph for every request.

3.6 Caching Strategies

The efficient routing of requests is further supported by
efficient caching strategies in WSFs. A WSF offers a caching
interface (Section 3.2) to all of its WAF applications and
manages cache eviction, scaling and the processing of cache
resource dependencies. In Section 4.3 we propose to aban-
don cache eviction based on policies [9], [10] by placing ev-
ery requestable resource in the cache and apply smart post-
processing to manage cache resources and its dependencies.

3.7 Processing Strategies

The processing of requests using a WSF is performed by
multiple applications. Resources managed by these applica-
tions can depend on each other, e.g., a sitemap of a blog
depends on the posts of a blog. To keep the depending
resources in sync, additional post-processing is required.
In Section 4 we propose a new post-processing strategy
that minimises response times while maintaining scalable
eventual consistency.

3.8 Performance Profiling

The request throughput a WAF is able to deliver is heavily
dependent on the concurrency of the incoming requests and
has an optimal concurrency range (Section 5.5) where the
throughput is at its maximum. In our prototype, we propose
a new algorithm to frequently profile the performance of a
WAF component and thus enable the WSF to adaptively
keep the concurrency in this measured optimal concurrency
range for optimal throughput.

4 PROTOTYPE IMPLEMENTATION

To examine the feasibility and performance of the abstract
WSF concept, we implement a prototype with a novel com-
position of components that is able to calculate and optimise
the overall throughput of a web service. The design goal of
the proposed prototype is to achieve improved scalability
and performance compared with contemporary WAFs. We
model the request throughput and scalability for analytical
evaluation and validate our model using multiple imple-
mentations on a cloud cluster of 42 machines. In order to
compare our prototype with a traditional scaling approach,
we further evaluate the performance of both approaches
with three real-world traffic traces.

4.1 Background

As a first step, the current state-of-the art cloud offerings
[14] that can be used as components are examined. The
authors in [14] distinguish between processing, storage and
communication offerings. Processing offerings execute work in
specialised execution environments or on virtualised hard-
ware. Typical components are servers that process requests
with the help of applications that are implemented using a
WAF. Storage offerings store data with various requirements
where key-value caches, relational databases, block and blob
storage components are typical examples. Communication
offerings connect processing and storage offerings. Typ-
ical components include load-balancers, queues, publish-
subscribe systems and virtual networking.

The normal composition of components to a native cloud
application implements either a two-tier or three-tier cloud
application pattern, or is a content distribution network [14].
The two-tier and three-tier patterns are similar, where the
three-tier pattern decouples the presentation and business
logic tier into separate tiers.

4.2 Normal Application Version VN

As a reference architecture we compose a Normal Applica-
tion Version VN from the two-tier pattern [14], where as
components we use a load-balancer LB, an application A
for the presentation and business logic tier and a cache
C for the data tier. The application component A runs an
implementation of a web application that is created using
a WAF. The processing of requests follows the graph with
the edges SN = {(LB,A), (A,C), (C,A), (A,LB)}. We use
this normal version VN to compare our prototype with the
traditional scaling approach throughout this work.

4.3 Scaled Application Version VS

The prototype we propose in this work uses more compo-
nents and a different composition than the normal version
VN . It implements a Scaled Application Version VS that uses
a WSF in combination with a WAF. Fig. 1 (b-h) illustrates
the components our prototype adds to the normal version
VN : A request queue Q, a server S, a publish-subscribe
component PS and a worker component W that embeds
an implementation of a web application A that is created
using a WAF.

4.3.1 Request Flow
We create the illustrated composition of components (Fig. 1
(b-h)) with two major design goals: optimised performance
and enhanced scalability.

Our approach to optimising the performance is to min-
imise the request flow graph for every request. We do this
by segregating commands from queries [17], [20], where
the segregation is performed based on the HTTP-verb of a
request. The goal is to minimise the components visited by
a request and reduce the load for the app A which executes
expensive request processing.

Fig. 1 (b-h) illustrates the detailed flow of a request
through the components: Requests enter the system through
multiple load-balancers LB (Fig. 1 (b)). The load-balancers
LB forward the request to one of the servers S. The server
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loop [forever]

blockingPop()
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loop [until synchronous updates resolved]
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selectSyncRequest()
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Fig. 2. Request processing and post-processing controlled by the
worker. (a) illustrates the pop of a request by the worker from the
queue. In (b) the processing and post-processing is executed until
all synchronous updates are processed. (c,e) highlights the parallel
selection for processing of a synchronous and asynchronous request.
In (d,e) each of the requests pushes content to the cache and declares
its update dependencies. (g) returns the response to the initial request
at (a).

S now decides whether the request is a Read-Request (RR)
or a Processing-Request (RP ). RRs are routed to the Read
Sub-System (SR) which is a graph with the directed edges
SR = {(LB, S), (S,C), (C, S), (S,LB)} (Fig. 1 (b,c,h)).
RP s are routed to the Processing Sub-System (SP ) where
SP = {(LB, S), (S,Q), (Q,W ), (W,A), (A,W ), (W,PS),
(PS, S), (S,LB)} (Fig. 1 (b-h)). The routing is conducted
based on the HTTP-verb where all requests with the verb
GET or HEAD are routed to the read sub-system SR and
all others to the processing sub-system SP . This is only
possible as by definition all deliverable resources are stored
in the cache C . Therefore, for a read-request RR the server
S looks up the cache key including possible fragments and
delivers the response. Processing-requests RP s always need
to be processed, so the server S puts them in the queue Q
and listens for the response at the publish-subscribe system
PS. A worker W with free resources pops the request from
the queue Q. The app A processes the request and the
worker W publishes the response to the publish-subscribe
system PS where the server S is waiting for it. Finally the
server S delivers the response back to the client (Fig. 1 (h)).

Our approach to enhancing the scalability is based on the
read and processing sub-systems and the component struc-
ture. Depending on the workload, both sub-systems can be
scaled independently on a component level. Additionally,

TABLE 3
Equations of the analytical prototype evaluation alongside the
modifications of the model presented in our previous work [1].

Component Model Modification to [1]
Processing Delay Extracted Request Size Delay and

added Post-Processing Delay
Request Size Delay Explicit Definition
Network Delay Extracted linear and quadratic form
Maximum Request Flow Added Machine parameter
Machines for Target Flow New
Composition Model Modification to [1]
Maximum Request Flow New
Machines for Target Flow Generalised form
Linear Machines Regression
for Target Flow

Generalised form

Performance Comparison Modification to [1]
Relative Average
Machine Reduction

Removed percentage

Break-Even Point
for Post-Processing

New

Performance Optimisation Modification to [1]
Optimal Concurrency Range
for Component

New

a component exposes its scalable machines as nodes. In our
prototype, we create multiple decoupled and parallel graphs
of nodes, where on arrival each request is designated to
one of the graphs. With this approach, we try to minimise
the influence requests can have on each other as they are
flowing in parallel.

4.3.2 Processing and Post-Processing
In order to use the optimised request flow we propose, all
deliverable resources need to initially be put and kept up-
to-date in the cache C . To initially fill up the cache, we keep
an index of all available resources that are cached before the
system goes into operating state. To keep the cache up-to-
date, the prototype uses the processing strategy illustrated
in the sequence diagram in Fig. 2. The server S puts requests
that need processing into the queue Q. If a worker has
available resource to process a request, it pops a request
from the queue Fig. 2 (a) and declares it a synchronous update
Fig. 2 (b). In the parallel processing section Fig. 2 (c-f), the
worker W selects a request that needs processing by the
app A (Fig. 2 (c,e)) and initiates the request. The app then
processes the request, pushes updated cache contents and
declares its synchronous and asynchronous updates at Fig. 2
(d,f) before it returns the response to the worker. Once all
declared synchronous updates are processed, the response
to the initial request is returned Fig. 2 (g).

A general goal to minimise the response time for a
request is to keep the number of synchronous updates as
low as possible as all of them are processed before the
response to the initial request is sent out. The asynchronous
dependencies are decoupled from the original request and
processed when the system has available resources. The pro-
posed algorithm chooses eventual consistency over strong
consistency in the cache [17]. During the processing step, the
resource that is delivered by the cache might not be updated
yet, however eventually it will be.



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, JUNE 2015 7

TABLE 4
Component parameters that are used to describe and model the

performance of a single component x.

Goal-oriented Description
Request-Flow / Second:
fx ∈ [0,∞]

The requests that flow through a com-
ponent in one second.

Target Flow / Second:
tx ∈ [0,∞]

A desired target fx for a component.

Performance-based Description
Network Delay:
dn,x ∈ [0,∞] in s

The time it takes a request to travel the
full network stack.

Network Delay Gain:
dg,x ∈ [0,∞] in s

The linear or quadratic time factor by
which dn,x increases.

Lookup Delay (VN ):
dl,x ∈ [0,∞] in s

The time it takes the app A to lookup a
resource in the cache C.

Processing Delay:
dp,x ∈ [0,∞] in s

The time it takes a component to pro-
cess a request.

Post-Processing Delay:
dpp,x ∈ [0,∞]

The time needed to post-process a re-
quest.

Size Delay:
ds,x ∈ [0,∞] in s

The time a single kilobyte adds to the
delay.

Workload-based Description
Concurrent Users:
cx ∈ [1,∞]

The number of concurrent users or con-
nections.

Size:
sx ∈ [0,∞] in kB

The size of a single request-response
round-trip.

Deployment-based Description
Machines:
mx ∈ [1,∞]

The number of machines that are used
for one component.

5 ANALYTICAL PROTOTYPE MODELLING

To be able to analytically evaluate our proposed prototype
we develop mathematical performance models for a compo-
nent (Section 5.2), the composition of multiple components
(Section 5.3), the performance comparison of two compo-
sitions of components (Section 5.4), and the performance
optimisation of a component (Section 5.5). An overview
of the developed equations alongside their relation to our
previous work [1] can be found in Table 3.

5.1 Performance Goals
The general performance goals of the modelled prototype
are either the reduction of the number of total machines
M needed to satisfy a desired target request flow F or in
reverse the increase of the request flow F with a given num-
ber of total machines M . In this evaluation, we model two
compositions of components we described in the previous
section: The normal application version VN and the scaled
application version VS . For our proposed prototype we aim
to achieve that FS > FN with equal M or MS < MN with
equal F .

5.2 Component Models
As a first step we model the performance of a single com-
ponent that later is composed to a larger system.

5.2.1 Parameters
Each component has its own set of parameters denoted
in Table 4. Component parameters are not valid for the
whole composition as they are influenced by the individual

10 20 30 40 50
cx

0.2

0.4

0.6

0.8

1.0

ndn,x

ndn,x,range

Data ndn,x,quadratic

Model ndn,x,quadratic

Data ndn,x,linear

Model ndn,x,linear

Fig. 3. Normalised measurments and model of the linear and quadratic
network delay

routing and processing of a component. By convention, we
use lower case variables whenever a parameter or model
belongs to a component. In a composition, a component is
identified by the subscript x which is a placeholder for a
component abbreviation such as LB, S or W .

5.2.2 Delay Factors

A request flowing through a component x is delayed by
different factors. The model takes this into account by cal-
culating the processing-, request size- and network delays:

dP,x = dp,x + dpp,x (1)
dS,x = ds,x · sx (2)

For the network delay we observe two different develop-
ments from measured data that is illustrated in Fig. 3:

dN,x =


cx · dg,x
mx

+ dn,x, if linear (3a)

c2x · dg,x + dn,x
mx

, if quadratic (3b)

The linear data (Fig. 3) is retrieved from a cache C with
constant lookup time, where the quadratic data comes from
the measurements of an application A. Despite the increased
complexity, we offer both models and allow the user to
select the appropriate accuracy. If simplicity is chosen over
accuracy, the linear version can be used only. Otherwise, the
delay model is selected by the model fit.

5.2.3 Maximum Request Flow

To calculate the requests that can flow through a component
per second, the concurrency is divided by the sum of all
component delay factors. Adding more machines to the
component increases the flow fx by mx to a maximum:

fx =
cx ·mx

dP,x + dS,x + dN,x
(4)

As the performance improvement is not linear with mx,
dN,x increases with mx and thereby degrades the perfor-
mance.
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TABLE 5
Composition parameters that are used to describe and model the

performance of the composition of multiple components.

Goal-oriented Description
Request-Flow / Second:
F ∈ [0,∞]

The requests that flow through all com-
ponents in one second.

Target Flow / Second:
T ∈ [0,∞]

A desired target F for the whole sys-
tem.

Workload-based Description
Cache-Processing Ratio:
CPR ∈ [1, 0]

The relation between the read-requests
RR and the processing-requests RP .

Cache-Hit Ratio (VN ):
CHR ∈ [0, 1]

The relation between cache-hits and
cache-misses.

Deployment-based Description
Machines:
M ∈ [1,∞]

The number of total machines that are
used for the whole system.

Machine-Quantity Tuple:
MQT = (mx | x ∈ CX)

Lists the number of machines for each
component in a composition X .

5.2.4 Machines for Target Flow
To satisfy a target flow fx = tx the number of machines a
component uses needs to be adapted. It can be calculated by
solving fx for mx in the linear case l and the quadratic case
q (a and b represent substitutions for display purpose only):

al = dp,xtx + dpp,xtx + ds,xsxtx

bl =
√
tx(4c3xdg,x + 4cxdn,x + (dp,x + dpp,x + ds,xsx)2tx)

aq = dn,xtx + dp,xtx + dpp,xtx + ds,xsxtx

bq =
√
tx(4c2xdg,x + (dn,x + dp,x + dpp,x + ds,xsx)2tx)

mt,x =

⌈
1

2cx
(al + bl)

⌉
, or

⌈
1

2cx
(aq + bq)

⌉
(5)

For the normal version VN : dpp,x = 0, as the normal version
has no concept of post-processing.

5.3 Composition Models
The composition models compose the individual compo-
nents into a larger system.

5.3.1 Parameters
The parameters denoted in Table 5 are valid for a whole
composed system of components. By convention, we use
capital notation whenever a parameter or model belongs to
the whole composition.

5.3.2 Components and Sub-Systems
We propose two compositions of components: The nor-
mal version VN and the scaled version VS . VN uses
the components CN = (LB,A,C) and VS : CS =
(LB, S,C,Q,W,PS). For the model the components need
to be separated by read sub-system SR and processing sub-
system SP :

CNSR,SP
= (LB,A) (6)

CNSR
= (C) (7)

CSSR,SP
= (LB, S) (8)

CSSR
= (C) (9)

CSSP
= (Q,W,PS) (10)

5.3.3 Maximum Request Flow
The maximum request-flow F predicts the maximal
throughput of VN or VS for a machine-quantity tuple MQT .
For VN , requests can be either served (hit) or need to be
processed (miss) depending on the cache C’s cache-hit ratio
CHR:

dp,A = (CPR · dl,A) + (dp,A − CPR · CHR · dp,A) (11)

The concurrency at the cache C depends on the number
of machines and concurrency of the application A and the
cache-processing ratio CPR:

cC = mA · cA · CPR (12)

The maximum flow is determined by the slowest compo-
nent of a composition:

FN = min{fx | x ∈ CNSR,SP
,

fx
CPR

| x ∈ CNSR
} (13)

For the scaled version VS , both the read sub-system SR and
the processing sub-system SP have to be considered:

FS = min{fx | x ∈ CSSR,SP
,

fx
CPR

| x ∈ CSSR
,

− fx
−1 + CPR

| x ∈ CSSP
} (14)

5.3.4 Machines for Target Flow
The machines equation calculates the machine-quantity tu-
ple MQT for a certain target flow F = T in a composition.
For VN , the app delay dp,A is as shown in (11) and the cache
C is only hit by read-requests RR:

tC = CPR · T (15)

The quantities are calculated for every component:

MT,N,MQT = (mx | x ∈ CN ) (16)
= (mLB ,mA,mC) (17)

MT,N =
∑

mx,x∈CN

mx (18)

The tuple (17) is turned to a scalar by summing its indi-
vidual components (18). The sum MT,N is the total number
of machines needed for target T . For instance, if the load-
balancer uses three machines, the application six machines
and the cache a single machine, the tuple looks like this:

MT,N,MQT = (3, 6, 1) (19)
MT,N = 10 (20)

The number of total machines for the target T then is the
sum of all component machines, in this example 10.

For VS , the target T is split up by the processing sub-
system SP and the read sub-system SR:

tx =


T, if x ∈ CSR,SP (21a)
CPR · T, if x ∈ CSR (21b)
(1− CPR) · T, if x ∈ CSP (21c)

The MQT is generated from all components:

MT,S,MQT = (mx | x ∈ CS) (22)
= (mLB ,mS ,mC ,mQ,mW ,mPS) (23)

MT,S =
∑

mx,x∈CS

mx (24)
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Fig. 4. A comparison of the total machines for target model MT , the
linear total machines regression MR and measured data for the scaled
version VS and normal version VN . The difference between VS and VN

is the relative average machine reduction RAMR.

As for the normal version VN , the tuple (23) is turned to a
scalar by summing its individual components (24).

5.3.5 Linear Machines Regression for Target Flow
The linear regression for the number of machines provides
a simpler approximation of the performance (Fig. 4). For the
normal version VN , the app delay dp,A is as shown in (11).
The slope can be calculated as a unit of increasing total
machines per flow-quantity:

MR,N,s =
∑

x∈CNSR,SP

1

fx
+

∑
x∈CNSR

CPR

fx
(25)

The full regression equation multiplies the slope with the
target T and adds the minimal number of component ma-
chines |CN |:

MR,N = T ·MR,N,s + |CN | (26)

For the scaled version VS , the slope needs to consider both
the read sub-system SR and the processing sub-system SP :

MR,S,s =
∑

x∈CSSR,SP

1

fx
+

∑
x∈CSSR

1

CPR · fx

+
∑

x∈CSSP

1− CPR

fx

MR,S = T ·MR,S,s + |CS | (27)

5.4 Performance Comparison
To evaluate the performance of our proposed compositions
VN and VS , we develop comparison metrics.

5.4.1 Relative Average Machine Reduction
When the scaled version VS needs fewer machines for the
same load than the normal version VN , we express the
delta as a factor of machine reduction. The relative average
machine reduction is calculated with the slopes of the linear
total machines regressions of both versions (Fig. 4).

RAMR = 1− MR,S,s

MR,N,s
(28)

fopt,x

copt,xclow,x chigh,x

q fopt,x

10 20 30 40 50
cx

20

40

60

80

100

120
fx

frange,x

fmean,x

Fig. 5. Optimal Concurrency Range ocw0.9,x = [2, 22] with a
performance-concurrency-width triplet pcw0.9,x = (89, 8, 20) for the
average normalised request-flow fx of 20 machines.

If the scaled version VS needs five machines and the normal
version VN needs six machines for the same load, the RAMR
equals (1−(5/6)) = 0.17. This shows, that the scaled version
VS needs 17% fewer machines than the normal version VN .
If both versions use the same number of machines, the
RAMR is zero.

5.4.2 Break-Even Point for Post-Processing
In the normal version VN , the app A is responsible for the
cache updates and invalidation. Therefore, the cost of up-
dates is added to to the app delay dp,A. In the scaled version
VS , the post-processing delay dpp,W is explicitly defined as
the time it takes to post-process a request. When comparing
both versions, an interesting metric is the time the scaled
version VS has available for the post-processing dpp,W . The
post-processing delay dpp,W where both versions deliver
the same performance is the break-even point dpp,W,BEP .
It can be calculated by equalising the linear regressions of
the normal version VN and scaled version VS and solved for
the post-processing delay dpp,W :

CSSP
= CSSP

\ {W} (29)
dpp,W,BEP = (MR,N = MR,S), solve for dpp,W

= cw ·mW · (MR,N −MR,S)

− (1− CPR) · (dN,W + dS,W + dp,W ) (30)

For the break-even calculation, the worker component W is
excluded from the processing components CSSP

as shown
in (29). The worker component delays without the post-
processing delay are specifically considered in the last term
of (30).

5.5 Performance Optimisation
To optimise the performance of a component we consider
the optimal load and implementation specific metrics.

5.5.1 Optimal Concurrency Range
From our machine-normalised measurements for one to 22
machines as frange,x (Fig. 5) we observed the request flow
of a component to have an optimal range. fmean,x shows
that with increasing concurrency cx, a component has a
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performance optimum copt,x where it delivers the maximal
request flow fopt,x. An algorithm that controls the flow of
requests to a component will try to load the component
with the optimal concurrency copt,x. A key metric for a
component, however, is the sensitivity around the optimum
concurrency. If the performance degradation is low around
the optimum, algorithms can operate with higher tolerance.
This allows the systems to be more insensitive to dynamic
concurrency values, which leads to fewer scaling actions. To
describe this broadness of possible concurrency values with
respect to a percentage request flow loss q, we introduce
the optimal concurrency range ocrq,x. An ocr0.95,x = [5, 20]
means that a component is able to handle concurrencies
between 5 and 20 while operating at 95% of the performance
optimum fopt,x.

The optimal concurrency range ocrq,x can be calculated
from a series of performance data(cx) that is measured with
increasing concurrency values cx. The following is repre-
sentative pseudocode for finding the lowest- and highest
concurrency values:

1: fopt,x ← max(data)
2: clow,x ← chigh,x ← copt,x ← max−1(fopt,x)
3: while data(clow,x) ≥ q · fopt,x do
4: clow,x ← clow,x − 1
5: end while
6: while data(chigh,x) ≥ q · fopt,x do
7: chigh,x ← chigh,x + 1
8: end while
9: return [clow,x, chigh,x]

The optimal concurrency width ocwq,x of an optimal con-
currency range ocrq,x expresses the general sensitivity of
the component to concurrency:

ocwq,x := max(ocrq,x)−min(ocrq,x) (31)

5.5.2 Performance-Concurrency-Width Triplet

In order to optimise the performance, we propose the
Performance-Concurrency-Width triplet pcqq,x as a metric
that allows comparing different implementations of compo-
nents with each other.

pcwq,x = (fopt,x, copt,x, ocwq,x) (32)

The pcwq,x-triplet includes the most important performance
parameters for a component. It allows building a perfor-
mance delta triplet ∆pcwq,x = pcwq,Z − pcwq,Y that shows
the performance differences between implementation Y and
Z . A delta triplet ∆pcwq,x = (12, 0, 8) presents Z as a
superior implementation to Y . With the same concurrency,
implementation Z’s request-flow f is 12 requests bigger. At
the same time it is 8 concurrency values more insensitive to
load.

6 EMPIRICAL PROTOTYPE EVALUATION

We empirically evaluate the proposed prototype with multi-
ple machines on the component and composition level. Ad-
ditionally, we compare the performance of three real-world
applications for the previously defined normal version VN

and scaled version VS compositions.

HS: IC HS: IJS HPi: IC HPi: IJS
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0.8
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nfx

Fig. 6. Absolute and normalised performance comparison of a
JavaScript-implementation IJS and a C-implementation IC on server
hardware HS and Pi-computers HPi.

6.1 Relation to our Previous Work
In [1] we evaluated a model that considered multiple ma-
chines in the single-machine scope only, where in this work
we evaluate the proposed WSF prototype with multiple
machines. The normal version VN in [1] did not employ
a cache, where this work enables caching for VN for a
fairer comparison. Additionally, in this work we evaluate
the performance using real-world application traces where
our previous work used a defined set of common parameter
ranges in simulated network traffic.

6.2 Evaluation System
Before we evaluate our model, we test our evaluation sys-
tem for the influences of different programming frameworks
and hardware.

6.2.1 Implementation
In general, the implementation for our evaluation system
consists of three modules: A test-runner that coordinates the
cluster execution and collection of results, a traffic-generator
that generates the load and sends it to selected machines,
and a component-machine that either responds to a request or
passes it on to another component-machine. All modules are
configurable with different parameters that control delay,
size of requests, concurrency and machine selection.

6.2.2 Influence of Programming Framework
To compare the influence of the programming frame-
work on the results we create two implementations: A
JavaScript-implementation IJS on node.js [25] and a C-
implementation IC using libuv [26]. We notice the C-
implementation IC is 1 order of magnitude faster than the
JavaScript-implementation IJS (Fig. 6).

6.2.3 Influence of Hardware
To evaluate the effect of different hardware, both imple-
mentations are tested on: Server hardware HS using a 2.6
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TABLE 6
Isolated evaluation data for the delay factors of the component models.

Delay Param Value R2 RMSE Fit

Network
dn,x 8.32× 10−4

0.975 1.7× 10−2 0.973
dg,x 3.96× 10−4

Size ds,x 1.26× 10−4 0.998 1.3× 10−3 0.975
Process dp,x 2.07× 10−10 — — —

GHz Intel Core i7 and a Raspberry Pi computer HPi with
700 MHz ARMv6l single-core where both are running Arch
Linux. We notice the server hardware HS is 1 order of
magnitude faster than the Pi-computers HPi.

6.2.4 Results

The data supports that the results of the evaluation are
transferable between different implementations and hard-
ware. Fig. 6 illustrates the normalised and absolute perfor-
mance curves of both implementations on both hardware.
All normalised curves show the same performance pattern
where the performance slowly increases to a maximum and
then breaks down as the system is overloaded. The perfor-
mance of the C-implementation IC on the server hardware
HS increases notably slower than all other implementations.
This is due to the enormous concurrency that is needed
to reach the maximum performance. This slower growth
is reflected in the Performance-Concurrency-Width triplet
pcwq , where the implementation needs high concurrency
values to run close to its optimal performance.

As the usability of the JavaScript-implementation IJS is
better, it is selected for the evaluation of the prototype. The
implementation is deployed in a cluster of 42 Raspberry
Pi Model B single-board computers HPi that are connected
through a HP ProCurve 2810–48G switch using 100 Mbit/s
ethernet.

6.3 Component Models Evaluation

Firstly, we evaluate the component models using a single
component with multiple machines. The central equation,
the maximum request flow fx of a component is composed
of the number of machines mx, the network delay dN,x, the
request size delay dS,x and the process delay dP,x. Since
the evaluation of the whole equation is complicated, the
delay parts are isolated and evaluated individually where
the results are given in Table 6.

6.3.1 Metrics

To quantify the results of the evaluation and compare the
model to the data, we calculate the Coefficient of Determi-
nation (R2), Root-Mean-Square Error (RMSE), Normalised
RMSE (NRMSE) and model fit. The RMSE shows the abso-
lute error without relating it to the range of observed values.
The normalised version of the RMSE relates to the observed
values so that NRMSE = RMSE/(ymax − ymin) where
ymax and ymin represent the maximum and minimum of
all observed values y. This allows expressing the model fit
Fit = 1 − NRMSE as a percentage where 1.0 is a perfect
fit and 0.0 is no fit.

6.3.2 Network Delay
In the first step, the network delay dN,x is isolated by setting
dS,x = dP,x = 0. For the model, the known parameters are
the number of machines mx and the concurrency cx. The
tests are run for all possible (mx, cx) combinations where
the number of machines mx is in the range of (1 . . . 20),
and the number of concurrent requests cx is in the range
of (1 . . . 50). The network delay dn,x can be retrieved from
the results as the smallest measured delay. The network
delay gain dg,x can either be formulated as a quadratic-
or linear optimisation problem on the network delay dN,x.
It is solved using Mathematica’s NonlinearModelFit which
automatically picks a linear or quadratic delay that fits best
to the regression methods listed in [27]. The results support
the network delay model dN,x as it fits the data by 97.3%.

6.3.3 Request Size Delay
The size delay dS,x is isolated by setting the processing de-
lay dP,x = 0 and the concurrency and number of machines
cx = mx = 1. According to the HTTP Archive [28], the
average individual response size depends on the content-
type but is smaller than 108 kB. Tested sizes s range from 0
to 400 to cover the average response sizes listed in [28] well.
The determination of the size delay ds,x can be formulated
as a linear optimization problem with dS,x and is computed
using Mathematica [27]. The results in Table 6 support the
size delay model dS,x as it fits the data by 97.5%.

6.3.4 Processing Delay
The processing delay dP,x can simply be measured where
our results are listed in Table 6. For example a component
that guarantees a constant lookup time O(1) is expected
to have a constant processing delay dP,x. For the cache
component, we use Redis [29].

6.4 Composition Models Evaluation

As a next step, the composition evaluation is used to analyse
the interplay of components. We conceive the chain and
distributed composition of components where our proposed
model makes the following assumptions that can be formu-
lated as hypotheses:

• H1: The maximum request-flow is determined by the
slowest component in the chain (chain composition).

• H2: The maximum request-flow is relative to the dis-
tribution of the traffic to the components (distributed
composition).

6.4.1 Chain Composition
In the chain composition multiple components are stringed
through a single connection. The evaluation is run with
(2 . . . 10) machines stringed together. One random machine
in the chain introduces a processing delay of dP,x = 0.05.
Measured at the end of the chain, the expected maximum
delay is:

F = (dN,x + dP,x)−1 = 19 (33)

The measurements of all chains show a request flow F of 19
which supports H1 with empirical data.
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applications in relation.

6.4.2 Distributed Composition
In the distributed composition one component distributes
the requests to many others. One component X dispatches
the traffic to two other components (Y,Z) with 10 different
ratios rdisp ∈ (0.0, 0.1, . . . , 1.0). X introduces a processing
delay of dP,X = 0.01 and Y a processing delay of dP,Y =
0.1. The expected maximum for each ratio is:

F = ((rdisp · dP,X) + ((1− rdisp) · dP,Y ))−1 (34)

All test cases combined have a total RMSE = 4.11 and a
total prediction fit of Fit = 0.942. This allows to support H2

as the data supports the model with confidence of 94.2%.

6.5 Real-World Application Evaluation

After the evaluation of components and their composition,
we evaluate the model as a whole. Therefore it is interesting
to see how the model behaves when traffic with the param-
eters of three real-world application traces is applied.

For each application, both the normal version VN and
the scaled version VS are implemented. We evaluate the
collected data series of each application with both versions
in two dimensions: The prediction fits of our proposed
model and the machine reductions. The data series mea-
sure the achieved request-flow F for the total number of
machines MT,N starting with the minimum determined by
the components for the version |CN | and |CS | up to the
maximum 20, as half of the 42 machines are needed for load
generation. As a scaling decision, the new machine of the
next run is always added to the slowest component that
introduces the bottleneck.

6.5.1 Metrics
From each application trace we extract the parameters for
the cache-processing ratio CPR, the processing-delay dP,x

and the size s where the extracted parameters are listed
in Table 7. We use the same prediction fit metrics as in-
troduced in Section 6.3.1 to compare the data series with
data calculated by our proposed model where the fits are
given in Table 7. The Machine Reduction (MR) is used
to compare the composite number of machines needed by
the normal version VN to the VS with equal target request
flows T . Table 7 shows the observed- and predicted machine
reductions MR and the relative average machine reduction
RAMR. In order to benefit from the optimised request flow,

our proposed prototype in VS needs to spend time to post-
process requests. The normal version VN spends the time
to manage its cache implicitly in the measured application
delay dp,A. In order to determine the available time VS has
for post-processing while achieving equal performance to
VN , we calculate the post-processing delay break-even point
dpp,W,BEP that is shown in the column PP BEP in Table 7.

6.5.2 Trip Planner
The trip planner Ttrip is a web service that allows users to
plan a journey all over the world. It calculates the itinerary
between two or more destinations and enhances it with
local information, e.g. restaurants and hotels. The service
has no social features that allow the sharing of trips or
recommendations. The traffic resembles an application of an
intermediate update nature as trip indices can be calculated
offline, but user input has to be handled. We are able to
analyse |Ttrip| = 10 million traces that are available at [30].

6.5.3 Social Network
The social network Tsocial is a platform we implemented
and set up on campus as traffic traces of social-networks
were unavailable. The platform provides a subset of the
features of a typical social-network platform and is built to
be as similar to Facebook as possible. In addition to the man-
agement of persons and their friendships, it shows a news
feed with status messages from friends and allows exchang-
ing private messages between friends. Missing features are
photo- and video-sharing and the creation and management
of groups. The platform is hosted on a university server
and only accessible from the university test network. Over
a time period of two months we recorded user requests
and replayed them ten times against the platform. The
traffic resembles traffic of a social nature as resources are
constantly changed by users. This allowed us to collect a
total of |Tsocial| = 0.6 million traces that are available at [30].

6.5.4 FIFA Soccer Worldcup 98 Website
Traces of the 1998 soccer World Cup website Tsoccer between
April 30, 1998 and July 26, 1998. The website resembles an
application of a more static nature as no social features
and few processing-requests are issued. We are able to
analyse |Tsoccer| = 14 million traces that are freely available
at [31]. As Tsoccer does not contain processing delays dP,x,
we manually set it to a rounded average processing delay
dP,x = 1 derived from TPtrip and TPsocial.

6.6 Results
We evaluated our proposed model on three levels: The
component level to ensure our proposed calculation with
delay factors is feasible, the composition level to support
our models regarding the interplay of components and
the application level to verify our performance comparison
models and compare the performance to a contemporary
two-tier application pattern. We are able to support the
component models as our results in Table 6 fit the data
with sufficient accuracy. Both hypotheses H1 and H2 are
supported by the composition models evaluation where the
prediction fit for H2 is 94.2%. Fig. 7 and Table 7 illustrate
the results of the real-world application evaluation. The
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TABLE 7
Trace Parameters, Prediction Fit, Machine Reduction and Post-Processing BEP for Real-World Applications

Trace Parameters Prediction Fit Machine Reduction PP BEP
App CPR dP,x s RMSEN RMSES FitN FitS Observed MR Predicted MR RAMR dpp,x

trip 0.849 1.41 2 0.707 0.858 0.962 0.954 0.630 0.604 0.627 2.69
social 0.571 0.48 161 0.806 0.858 0.957 0.954 0.325 0.355 0.466 1.19
soccer 0.998 1 5 1.048 2.790 0.944 0.853 0.924 0.943 0.903 26.04

average prediction fit of 93.7% for all three applications
further supports our proposed model. All applications in
Table 7 need fewer machines (63%, 32%, 92%) if they use
the proposed prototype, which demonstrates the potential
of our proposal. Because the normal version VN routes all
requests to the application component, the scaled version
VS has 2.69, 1.19 and 26.04 seconds to post-process requests
before the performance of both versions is equal.

Finally, it is noted that the authors are the ones who
evaluated their own implementation with a potential bias,
where in the future independent instances should verify the
results. Furthermore, it would be interesting to see that the
proposed model is validated with further extensive, more
contemporary datasets beyond the traffic traces of the 1998
soccer World Cup website.

7 CONCLUSION AND FUTURE WORK

The proposed WSF builds upon existing web service infras-
tructure to be directly applicable to today’s web services,
and a novel scaling layer is integrated to enable scaling
capability for existing web services in the cloud. In this
work, we developed a conceptual architecture of WSFs with
components, modules, interfaces and a set of optimised
schemes for scaling including request flow routing, caching,
processing, performance profiling etc. We extended the
mathematical model of the prototype we proposed in our
previous work. A cluster of 42 Raspberry Pis allowed us to
successfully evaluate the model in the multi-machine cloud
scope. We were able to put the performance evaluation into
a real context by using the parameters extracted from a
total of 25 million trip planner, social network and soccer
worldcup traces. We introduced a cache to the traditionally-
scaled version to provide a fairer comparison with the WSF
version. We also presented the development-process for a
web platform when a WSF is applied.

The results showed that the application of a WSF can
reduce the number of total machines needed by 32%, 63%
and 92%. When the traditionally-scaled version does not
spend any time on cache-updates, this allows the WSF to
occupy 2.7s, 1.2s and 26s for synchronous post-processing
updates. If a WSF is able to process all request dependencies
within these time limits, it outperforms traditionally-scaled
WAF systems.

The focus of our future work will be on further optimisa-
tion of the post-processing system. We will conduct research
in the area of dependency analysis to find suitable data
structures for dependencies that allow a practical declara-
tion, management and analysis of resource links. Further-
more, we will search for eligible, parallelisable algorithms
that optimise the post-processing performance. Optimisa-
tions will include mechanisms such as the detection and

removal of duplicate updates, the breakup of cyclic updates
and the introduction of update rate limits for resources. We
will also use developer assistive systems to point out critical
deep dependency paths to enable developers the decoupling
of affected resources.
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