
Web Scaling Frameworks:
A novel class of frameworks for scalable web

services in cloud environments
Thomas Fankhauser∗†, Student Member, IEEE, Qi Wang∗, Member, IEEE, Ansgar Gerlicher†, Member, IEEE,

Christos Grecos∗, Senior Member, IEEE and Xinheng Wang∗, Member, IEEE

Abstract—The social web and huge growth of mobile smart
devices dramatically increases the performance requirements
for web services. State-of-the-art Web Application Frameworks
(WAFs) do not offer complete scaling concepts with automatic
resource-provisioning, elastic caching or guaranteed maximum
response times. These functionalities, however, are supported
by cloud computing and needed to scale an application to its
demands. Components like proxies, load-balancers, distributed
caches, queuing and messaging systems have been around for a
long time and in each field relevant research exists. Nevertheless,
to create a scalable web service it is seldom enough to deploy
only one component. In this work we propose to combine those
complementary components to a predictable, composed system.
The proposed solution introduces a novel class of web frame-
works called Web Scaling Frameworks (WSFs) that take over the
scaling. The proposed mathematical model allows a universally
applicable prediction of performance in the single-machine- and
multi-machine scope. A prototypical implementation is created to
empirically validate the mathematical model and demonstrates
both the feasibility and increase of performance of a WSF. The
results show that the application of a WSF can triple the requests
handling capability of a single machine and additionally reduce
the number of total machines by 44%.

I. INTRODUCTION

The enormous growth of smart mobile devices in com-
bination with social web services increases the number of
requests that need to be processed by modern web platforms
in a timely fashion. Whereas cloud computing provides the
ability to provision the hardware needed, state-of-the-art Web
Application Frameworks (WAFs) do not offer integrated scal-
ing concepts to deal with automatic resource-provisioning and
elastic caching or ensure a guaranteed maximum response
time.

They are rather designed to abstract common functionali-
ties needed for web application development including data-
management, url-mapping, session-handling and response-
generation. Today, users progressively access the social web
from anywhere using their mobile smart devices, which leads
to increased traffic. A single computing resource might not
be able to satisfy such an amount of requests - only the
junction of multiple computing resources, where each resource
gets a small share of the total requests, allows to handle

∗School of Computing, University of the West of Scotland, Email:
{Thomas.Fankhauser, Qi.Wang, Christos.Grecos, Xinheng.Wang}@uws.ac.uk
†Mobile Application Development, Stuttgart Media University, Email:
{fankhauser, gerlicher}@hdm-stuttgart.de

such huge amounts of requests in aggregation. Handling the
exponentially increasing global requests adds the requirement
of being able to run multiple instances of an application
for highly scalable web services. The major challenges that
are introduced by this requirement are the management of
the shared resources, the balancing of the requests among
all instances and the decision when to spawn or terminate
instances. These challenges are collectively referred to as
horizontal scaling [13], [14], [16].

Our experiments have showed that WAFs have different
strengths and weaknesses. A highly abstracted WAF like
Ruby on Rails, for example, was slower than the very thin
WAF node.js but more powerful regarding data management
and interface rendering. If a web service needs to provide
both a fast and slim JSON API and a full blown HTML
website it is the best solution to combine both WAFs. As
both the horizontal scaling and web service composition are
very complex matters, it makes sense not to introduce them
to WAFs but offload them to another layer - the Web Scaling
Framework (WSF) proposed in this paper. Fig. 1 illustrates a
WSF that incorporates multiple WAF applications.

Fig. 1. The relationship between the WSF and WAFs

To comply to a proposed class of WSFs, a WSF should:

• take over the responsibilities of scaling and incorporate
existing WAFs

• separate the business logic in the web service from the
hosting logic

• connect to and combine existing WAFs to a compound
web service using standard HTTP requests

• introduce low overhead when added, whilst adding the
instant ability to scale

• constantly adapt their infrastructure to fit the required
performance at all times

• be able to provision as much resources on a pay-per-use
base as needed

• benefit from the horizontal scaling ability that is enabled
by cloud computing

• be able to transparently use Software-as-a-Service or
machine-cluster components

The paper is organised as follows. Section II summarises
the results of the related work. Section III describes the
overall design of the proposed WSF. Section IV introduces
the modelling and prototyping of the proposed WSF in a
single- and a multi-machine cloud scope, respectively. Section
V presents the empirical results to evaluate the machine scope
model and the analytical effect of adding more machines to the
system. Section VI visualises the application of the proposed
WSF by looking into three different web service scenarios that
apply the proposed WSF. Section VII outlines the conclusions
and gives a perspective on future research.

II. RELATED WORK

For each of the components of the proposed WSF there
exists a branch of research. Our focus, however, is on the
composition of the components. We reviewed three perspec-
tives Architecture, Cache, Data Store with seven attributes
Full Architecture, Algorithm, Testbed, Data, Queue, Load-
Generation, Survey in the existing work. We found that most
publications focus on one perspective only. The TwoSpot plat-
form [9] applies open and standards-based technologies and
therefore composes reverse-proxies, work-servers, file-servers
and load-balancers. The author’s major focus is on preventing
vendor lock-in by an open Platform-as-a-Service. ElasticSite
[11] extends non-cloud resources by cloud resources with a
focus on different launch policies. AzureBlast [10] combines
components of the WindowsAzure Platform-as-a-Service to
run the BLAST algorithm in parallel. Reference [12] proposes
a highly resilient systems architecture for cloud with a focus
on failures and fallback handling. Auto-Scaling [8] proposes
an algorithm with job deadlines to optimise resource utilisa-
tion. There is reputable research for the different component
branches. Join-Idle-Queue [6] is an improved novel class of
queueing algorithms. The EQS [7] introduces a decent way to
scales message queues and publish-subscribe systems in the
cloud. An elastic cache system is introduced by [4] and [5]
proposes a cache framework that performs comparable to sole
remote accessed in-memory cache systems. The novelty of
our work is the composition of existing components to form
a scalable, predictable system. The performance of the system
can be calculated with a mathematical model, both in the
machine- and cloud scope. The model is based on component
delays and can be easily extended to accommodate more
components. The system uses the technology of existing and
the future development of common WAFs and relieves WAF
from scaling. It uses a persistent cache that is kept updated at
all times to speed-up read-only responses. The proposed work
is able to utilise both Infrastructure-as-a-Service and Software-
as-as-Service as components.

TABLE I
COMPONENTS OF THE PROPOSED WEB SCALING FRAMEWORK

Cluster Component Description
Servers (S) Classify the request to be either RR : m ∈

{GET} or RP :∈ {POST, PUT, DELETE, ...}
by the HTTP method m. They lookup content
from the cache system or enqueue requests to
have them processed.

Caches (C) Store the whole content the WSF is able to
serve.

Queues (Q) Hold the requests that need processing until
they are popped by available Ws. Different pri-
orities allow certain requests (e.g. interactive)
to be processed with privileges.

Publish-Subscribe Sys-
tem (PS)

Publishes the processed responses to channels
named after the request ids. Everyone who is
interested in the responses, especially the Ss,
subscribe to the corresponding channels.

Workers (W) Pop requests from the Qs and have them pro-
cessed by their localhost APP. Update the C
and publish the responses to the PS.

Applications (APP) Get their requests from the localhost W and
are developed using any existing WAF. Push
the updated content to their W.

Load-Balancers (LB) Receive the requests from the clients and dis-
tribute them to Ss.

Databases (DB) Provide content for the access by the APPs.

Service Component Description
Indexer Initially fills C with all contents by emitting

requests to the Qs.

Monitor Watches Q-lengths and job-deadlines for re-
source provisioning.

Session Registers, validates and destroys user sessions.

Access Authorises resource access by user sessions.

III. PROPOSED WEB SCALING FRAMEWORK

The general concept of the proposed WSF named Scales is
to cache all available content and distinguish each request to
be either a read-request RR or a request that needs processing
RP . RRs are directly served from cache and RP s are queued
for processing. RRs never hit a web application which im-
plicates that only requests that need processing are forwarded
to a web application. Depending on the ratio between RP s
and RRs this can drastically reduce the amount of requests
that arrive at a web application, which improves the overall
performance as the processing by the web application is slower
than the read from a cache. Each of the components in Table
I is a cluster by itself and fully horizontally scalable (Fig. 2).

A. Request Flow

Requests enter the system through an array of LBs. The
LBs then forward each request to one of the system’s Ss. The
system has a read sub-system graph with the directed edges
SR = {(LB, S), (S,C), (C, S), (S,LB)} and a processing
sub-system graph SP = {(LB, S), (S,Q), (Q,W), (W,A),
(A,W), (W,PS), (PS, S), (S,LB)}. The S selects either SR

or SP based on the HTTP method where GET → SR and
every other verb → SP . If SR is selected, S gets the cached
url path from a C, resolves possible fragments and responds

Fig. 2. The flow of requests through the proposed prototype with a detail view of the processing and synchronous post-processing.

with the result. If SP is selected, S puts the request in a Q
and waits for a response event from the PS. One of the Ws
that has processing capabilities pops the request from Q and
sends it to the APP on its localhost. APP processes the request,
pushes the updated contents through W to C and declares its
dependent url paths that need to be called by W before the
request can return to PS. W collects the updates, optimises the
dependencies and starts the post-processing by requesting all
dependent update actions from the app. Once all updates are
done and all new content is pushed to C, it emits the response
to PS where S listens for the response-event and responds with
the result.

B. Post Processing

The post-processing updates submitted by APP can be
synchronous or asynchronous. Synchronous makes the worker
emit the response after the update is processed (Fig. 2, R).
Asynchronous emits the response regardless of the processing
status of the update. This allows the application to guarantee
updated resources at the time of the response where needed
and speeds up response times for background updates.

IV. MODELLING AND PROTOTYPING

The general concept of WSF is evaluated with a mathe-
matical model. The model itself is evaluated with a prototype
implementation of a WSF named scales.js and an abstract web
application that allows testing different performance critical
computations. The implementation is created using JavaScript
with node.js and is able to work with WAFs of any language.
The prototype (scales.js + abstract app) is then tested with
different combinations of parameter sets. The results are
compared to the calculated values from the model to derive
the prediction errors. If the RMSE (Root-Mean-Square Error)
is smaller than 5% of the maximum requests per second (RPS)
the model is acceptable. Two versions of apps are considered:
The normal app version VN and the scaled app version VS .
In VN requests are sent to a WAF directly, in VS requests
are sent to a WSF. The performance metrics are the average
request duration DN vs. DS (lower is better) and the average
requests per second RPSN vs. RPSS (higher is better). To be
able to collect general data, the parameters that influence the

performance of a web application are extracted. Each parame-
ter tuple PT produces different performance metrics. The aim
is to find the PTs where RPSS > RPSN and DS < DN .
The mathematical model describes the relationships between
the PTs and the RPSs and Ds. An abstract app that behaves
identical to a web application with the defined PTs is used to
empirically validate the model.

A. Parameter Extraction

Table II lists the extracted parameters for a single-machine
and a multi-machine cloud scope as the ability to scale
horizontally is a key characteristic for cloud environments
[13]. The performance is expected to be better for higher
Cache/Processing Ratio (CPR) values because then, da de-
creasingly influences the response duration D. The tested
CPR values are CPR ∈ (1.0, 0.5, 0.0) where for VS the
tuples where CPR = 1.0 are expected to perform better and
CPR ∈ (0.5, 0.0) are expected to perform worse than VN .

H1 : RPSS > RPSN for
1

3
of all 81 PTs

With a correct setting of the system parameters PT system

the mathematical model is expected to predict with a root
mean-squared error of less than 5%:

H2 : RMSE < 5% for all 81 PTs

B. Complex Network Delay

The previous extraction uses a constant value for the
network delay. Whereas this simplification can be made for
single-machine scenarios, in multi-machine scenarios a more
complex model has to be used. An increasing concurrency
also increases the network delay [17] until the network stack
is completely loaded and not able to handle any more requests.
For WSFs this means that the network delay for each compo-
nent Cx is not a constant, but dependent on the concurrency c.
The delay is specified as the minimum delay the network stack
needs to compile, transmit and decompile the request dn,min

plus the delay that is caused by increasing concurrency c:

dn,x = dn,min +
c · dn,gain

(cn,max ·mx)− c
(1)

TABLE II
PARAMETERS OF THE PROPOSED WEB SCALING FRAMEWORK

Machine Parameter Description
Cache/Processing Ratio:
CPR ∈ [1, 0]

The relation between GET and all other
HTTP method type requests.

Response Size:
s ∈ [0,∞] in kB

The size of the response body.

Concurrent Users:
c ∈ [1,∞]

The number of concurrent users or connec-
tions.

Post-Processing Updates:
u ∈ [0,∞]

The number of post-processing updates is-
sued by a request.

Action Delay:
da ∈ [0,∞] in s

The time it takes the WAF to process the
request.

Network Delay:
dn ∈ [0,∞] in s

The minimum time it takes a request to
travel the full network stack.

Size Delay:
ds ∈ [0,∞] in s

The time a single kilobyte adds to dn.

Framework Delay:
df ∈ [0,∞] in s

The time a WSF adds to the processing by
traveling through SP .

Cloud Parameter Description
Component:
cx ∈ {CN , CS}

The components of VN : CN =
{LB,APP} and VS : CS = {LB, S, C,
Q, W, APP, PS} so CLB denotes the load-
balancer and CS the server component.

Component Delay:
dx ∈ [0,∞] in s

The time a component needs to process
a request. For the APP component this is
the time the processing and post-processing
takes.

Machine Size:
mx ∈ [1,∞], x ∈
{CN , CS}

The number of machines used for a single
component cx. If a system uses four work-
ers mW = 4.

Machine Configuration:
mcx, x ∈ {VN , VS}
mcN = (mLB , mAPP),
mcS = (mLB , mS , mC ,
mQ, mW , mPS)

A tuple representing the number of ma-
chines used per component. The tuple
mcS = (1, 2, 1, 1, 4, 1) uses two server-
, four worker- and one of each of the other
components.

Total Machine Count:
M ∈ [1,∞]

The total number of machines used for the
system and thereby M =

∑
(mcx), x ∈

{VN , VS}.
Minimum Network Delay:
dn,min ∈ [0,∞] in s

The minimum network time it takes a re-
quest to flow through a component that is
lost in the network stack.

Network Delay Gain:
dn,gain > 0

The distribution of how fast the delay is
increased with growing concurrency. Low
values add less delay for small c and rise
extremely when c→ cn,max. High values
when dn,gain →∞ increase the delay in
a linear fashion.

Maximum Network Con-
currency:
cn,max > 1

The maximum amount of requests where
a component is not able to flow more
requests through its network stack because
it is fully loaded.

Each added machine mx increases the possible maximum
concurrency for component cx as it brings in a new network
stack.

C. Modelling for the Single-Machine Scope

The mathematical model predicts the average request dura-
tion D and the average requests per second RPS for VN and
VS . Input to the model are the application specific parameter-
tuples PT app = (CPR, da, s, u, c) and measured system
parameters PT system = (dn, ds, df). Output is the predicted

average value for the given PT that can be compared to the
empirical data of the abstract app for evaluation purposes or
current live system values.

1) Request Duration: Requests in VN are always routed to
the application. This means that every request is delayed by
the action and the network:

DN = da + dn + (s · ds) (2)

In VS requests are routed to sub-system SR or SP in relation
to the CPR. The delays for each sub-system are different: dc
for the time it takes to get a value from cache (2) and dp for
the time it takes the WSF to have the request processed by
the app (3).

dc = dn + (s · ds) (3)
dp = dn + (s · ds) + da + (da · u) + df (4)

Weighted by the CPR the duration is calculated with:

DS = CPR · dc + (1− CPR) · dp (5)

2) Requests per Second: The RPS depend on the con-
currency c of the incoming requests. The model makes no
limitations on the value of c, however for real applications
the value for c heavily depends on the app and can easily be
determined empirically. For the prediction, the c value where
the app was able to handle the most RPS should be chosen. If
the app is able to handle c concurrent connections, the RPS
for VN is calculated with:

RPSN =
c

DN
(6)

Analog to VN this is also applicable for VS :

RPSS =
c

DS
(7)

D. Modelling for the Multi-Machine Cloud Scope

Instead of focussing on a request traveling the whole system,
the request flow through the components is investigated. This
allows to identify the slowest components as bottlenecks
that prevent the other components from performing better.
To consider all involved components, the measurement point
for the maximum request flow per second RFPSmax is
located where the requests leave the system at Rout (Fig.
2). The value RFPSmax for VN and VS depends on the
used machines mx for each component cx. It specifies the
theoretic maximum number of requests that leave the system
per second. Compared to the previously calculated RPSmax

where requests travel through a chain of component delays,
the RFPSmax only considers the faceless total number of
requests that is given by the slowest component in the system.

1) Maximum Request Flow for Components: The request
flow through a component cx is influenced by the concurrency
of requests c, the complex network delay dn,x, the delay the
component itself introduces for processing dx and the size
delay sḋs. This allows a general calculation with the following
equation:

RFPSx =
c

dn,x + dx + (s · ds)
(8)

To consider the post-processing of the W component, the
W delay dW is calculated like this:

dW = da + (da · u) (9)

2) Total Maximum Request Flow: VN uses the following
components for all requests:

CN = {LB,A} (10)

The total maximum request flow is defined by the slower
component of both:

RFPSN = min
x∈CN

{RFPSN,x ·mx} (11)

For VS both sub-systems SR and SP have to be considered
with the following components:

CS,R = {LB, S,C} (12)
CS,P = {LB, S,Q,W,PS} (13)

For each sub-system the maximum request flow is defined like
this:

RFPSS,R = min
x∈CS,R

{RFPSS,x ·mx} (14)

RFPSS,P = min
x∈CS,P

{RFPSS,x ·mx} (15)

This enables to calculate the total maximum request flow
RFPSS considering the CPR:

RFPSS = CPR ·RFPSS,R+(1−CPR) ·RFPSS,P (16)

3) Minimum Machines for Component: A key metric is the
number of machines mx that are needed for a component to
satisfy a certain target RFPS : Tx. The calculation for that
number of machines can be derived by equalising RFPSx =
Tx and resolving it into mx.

4) Total Machines: In VN , the total number of machines
needed to satisfy the target TN is calculated by accumulating
the machines needed for each component of CN :

MN =
∑

x∈CN

mx(TN) (17)

For VS , the target TS is divided into the read sub-system
SR : TR and process sub-system SP : TP by considering the
CPR-weighted flow that is needed for both sub-systems:

TS,R = CPR · TS (18)
TS,P = (1− CPR) · TS (19)

The total number of machines needed is then calculated by
adding up the machines needed for both sub-systems:

MS =
∑

x∈CS,R

mx(TS,R) +
∑

x∈CS,P

mx(TS,P) (20)

VS performs better than VN if MS < MN for a common
target T .

5) Linear Total Machines Regression: The calculation of
the total machine demand can be simplified with a linear
regression approximation. The most interesting metric is the
slope of the regression as it dictates the relation of the
growth of the machine demand for an increasing RFPS. The
slope for VN can be calculated by determining the maximum
RFPSN,max

RFPSN,max = max
x∈CN

(RFPSN,x) (21)

and add up the number of machines needed for all components
to reach it:

msN =

∑
x∈CN

RFPSN,max

RFPSN,x

RFPSN,max
(22)

The full equation for the regression can then be compiled to:

MN,Reg = dmsN + |CN |e (23)

The regression for VS needs to consider both sub-
systems SR and SP . It needs to distinguish between shared
(CS,R,S , CS,P,S) and not-shared (CS,R,NS , CS,P,NS) compo-
nents of the two sub-systems:

CS,Shared = CS,R ∩ CS,P (24)
CS,R,S = CS,R ∪ CS,Shared (25)
CS,P,S = CS,P ∪ CS,Shared (26)

CS,R,NS = CS,R \ CS,Shared (27)
CS,P,NS = CS,P \ CS,Shared (28)

In analogy to VN , VS the slope can be calculated with the
maximum RFPSS,max

RFPSS,max = max
x∈CS

(RFPSS,x) (29)

and the sum of the machines needed to reach it where the
shared components are weighted by the CPR. To get the final
regression slope both sub-system slopes (equations omitted
due to length) are summed up weighted by the CPR:

msS = CPR ·msS,R + (1− CPR) ·msS,P (30)

The full equation for the regression of VS is:

MS,Reg = dmsS + |CS |e (31)

6) Relative Average Machine Reduction: To compare the
performance of VN to VS both slopes are set in contrast like
this:

RAMR = (1− msS
msN

) · 100 (32)

The calculated value is the percentage of machine reduction
VS introduces compared to VN . If RAMR = 0, both versions
are likely to need the same amount of machines for the same
RFPS. If RAMR = 80, VS is expected to need 80% less
machines than VN . The bigger the RAMR, the greater the
economic retrenchment of VS .

TABLE III
ACTIONS OF THE PROTOTYPE

Method
Path

Description

GET
/items/:s/:da

A response with skBs is created and returned non
blocking after da seconds. For VS this action is fully
served from cache.

POST
/items/:s/:da/:u

Also returns a response with skBs, but the total delay
is calculated da + da ∗u because in VS the request is
delayed until all updates are post-processed.

E. Empirical Prototyping

To validate the mathematical model for the machine scope
empirically, an implementation of a web application is needed.
The web application needs to consider the different parameter-
tuples it is configured with - e.g. it needs to delay the response
by 0.5s if da = 0.5 and return a response of 100kB if s = 100.
VN evaluates with parameter-tuples in the form PTN =

(CPR, da, s) and VS with PTS = (CPR, da, s, u) because
u has no influence on VN . Data is collected with all com-
binations from CPR ∈ (1.0, 0.5, 0.0), da ∈ (0.0, 0.5, 1.0),
s ∈ (25, 50, 100) and u ∈ (0, 5, 10) which are typical
parameters for popular web services [15]. VN has 3 3-tuples
which makes 33 = 27 tuples and VS has 4 3-tuples resulting
in 34 = 81 parameter-tuples. All other parameters need to be
configured by either measuring the delays on the real system or
monitoring values on the live system - e.g. the CPR. Table III
shows the actions of the prototype that is implemented using
the WAF node.js.

The data is collected for each of the parameter-tuples in VN
and VS . A single test-run for a PT x requests for a 10 minute
period with an increasing concurrency from 0...100 over the
full period. The maximum RPSmax and Dmax is the result-
pair. The application always runs on a freshly booted virtual
machine (2,6 GHz i7, 1,7 GB RAM, Ubuntu Server 13.04).
The results can then be compared to the predicted result-pairs
calculated in the previous section.

V. RESULTS

In the first run, the parameter-tuples for VN are tested. The
maximum RPSmax,PT,x and Dmax,PT,x over the 10 minute
period is collected and set to be the performance baseline with
a performance of 100%. Then the same tests are executed for
VS . The results are compared to the result of VN which gives
the final performance metric for each parameter-tuple.

A. Empirical Data

For 30 of 81 PTs (37%) the performance of VS is better
than the performance of VN which allows to accept H1. The
interesting metric is ∆RPS = RPSS − RPSN which is
positive if VS is better and negative if VN is better. The mean
of all ∆RPS = µ = 54 which means that over all PTs VS
was able to generate 54RPS more than VN . The mean of the
30 PTs that performed better is µbetter = 3952, the mean of
the worse PTs is µworse = −2239.

B. Model Evaluation

The RMSE is calculated based on the predicted versus the
empirical RPS. With a dn = 0.01 the absolute maximum
RPSmax = 10000. This allows to accept H2 if RMSE ≤
RPSmax · α ≤ 10000 · 0.05 ≤ 500. With the system
parameters PT system = (dn, ds, df) = (0.01, 0.0001, 0.065)
the RMSE = 232 < 500 which allows to accept H2

and therewith the mathematical model as an approximative
performance prediction on a single machine. The empirical
evaluation of the model for the cloud scope using many
machines is the next planned step in the future work.

C. Analytical Effect of Adding Machines

 0

 20

 40

 60

 80

 100

 120

 140

 160

0 200k 400k 600k 800k 1M

To
ta

l M
ac

hi
ne

s
(M

)

Maximum Request Flow per Second (RFPSmax)

MNMSMReg,NMReg,S

CPR = 0.7
dn,min = 0.001
dn,gain = 0.01
s = 50
ds = 0.001
c = 6000
cn,max = 8000

dLB = 0.0001
dQ = 0.001
dPS = 0.001
dC = 0.001
dS = 0.001
dw = 0.5
da = 0.5

Fig. 3. Total Machine comparison (prediction and linear regression). VS

constantly needs 44.44% fewer machines than VN (lower is better)

Fig. 3 shows a comparison of the machines needed for VS
and VN with the growing target RFPS : T . VS performs
better than VN because fewer machines are needed for the
same target. The initial better performance of VN is derived
from the minimum number of machines for each system as -
by definition - each component needs at least one dedicated
machine. The minimum number of machines for VN : |CN | =
2 and for VS : |CS | = 6. These limits have a mathematical
reason, in application however multiple components can be
run on a single machine for small systems.

For the parameters of Fig. 3 the linear regression approxi-
mates slopes of msN = 10 · 10−5 and msS = 5.6 · 10−5. The
RAMR = 44.44 which means that, as the RFPS increases,
VS constantly needs 44.44% fewer machines than VN . The
solid area indicates the scope of the regression with respect to
possible CPR values. The lower border is the total number of
machines if full caching is used (CPR = 1,ms = 2.7 ·10−5),
and the upper border if every request needs to be processed
(CPR = 0,ms = 12.3 · 10−5). The green area indicates
the CPR values where VS needs fewer machines than VN .
In summary this means that WSFs are economically efficient
because they provide a fine grained scaling control that only
scales the necessary bottleneck components. WAFs in con-
trary only allow to scale the whole system - independent of

the bottleneck. This also scales unneeded resources that are
dispensable but costly.

VI. APPLICATION

How can the derived model be used to predict performance
of real systems? Consider three sample web applications
(S1, S2, S3) created with different WAFs (JEE, PHP, Ruby
on Rails). All of them are already deployed in production
and as a scaling solution a WSF is considered. The first
step to calculate the predicted performance is to gather the
app- PT app = (CPR, da, s, u, c) and system-parameters
PT system = (dn, ds, df) by measuring the production system.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
eq

ue
st

s
/ S

ec
on

d
(R

PS
)

Cache / Processing Ratio (CPR)

c = 320
u = 0
s = 30
da = 0.200
dn = 0.010
ds = 0.001
df = 0.050

VNVSMore RPS than VNFewer RPS than VN

BEPCPR = 0.2

RPS0.8 = 3555

More RPS
than VN

Fig. 4. CPR dependent RPS development for S2. The CPR where VS

starts to perform better than VN is given by break-even BEPCPR = 0.2.
At CPR = 0.8, VS generates 166.6% more RPS than VN .

A. Calculations for the Single-Machine Scope

Assume the same PT system = (0.01, 0.001, 0.05) for all
apps and the PT app : S1 : (0.7, 0.3, 65, 3, 60), S2 : (0.8,
0.2, 30, 0, 320), S3 : (0.9, 0.1, 83, 2, 20). The RPS
calculation then predicts the following performance for (S1,
S2, S3): RPSS : (181, 3555, 162) and RPSN : (160, 1333,
104). The comparison of (RPSS/RPSN) − 1 then predicts
the performance to increase by (13.1%, 166.6%, 55.7%) using
a WSF on a single machine. Fig. 4 illustrates the highest
performance increase of S2.

B. Calculations for the Multi-Machine Cloud Scope

Assume the same target RFPST = 100k for all apps. The
MReg calculation predicts MReg,N = (723, 84, 1343) and
MReg,S = (463, 60, 1260) machines to satisfy the target.
The RAMR predicts a reduction by (36.5%, 35.1%, 6.5%)
machines using a WSF in a cloud environment.

VII. CONCLUSION AND FUTURE WORK

We have proposed WSF, a novel automated scaling layer, for
highly scalable web services. Both WAFs and developers could
then focus on creating the business logic layer of web ser-
vices. The proposed mathematical model allows a universally

applicable prediction of performance in the single-machine-
and multi-machine scope. The implemented prototype serves
as a general composition architecture and demonstrates both
the feasibility and possible performance increase of such a
framework.

The results showed that the application of a WSF can triple
the performance of a single machine and additionally reduce
the number of total machines by 44%. In our future work we
will create and deploy a WSF to the mobile cloud [1]–[3].
The research needed for the shift to the mobile cloud involves
the inspection of distributed runtime environments, offloading
policies, distributed routing technologies and many more. We
hope to benefit from the ongoing research in those fields and
incorporate the results in our future work.

REFERENCES

[1] G. Huerta-Canepa and D. Lee, ”A virtual cloud computing provider for
mobile devices”, p. 6, 2010.

[2] M. V. Pedersen and F. H. P. Fitzek, ”Mobile Clouds: The New Content
Distribution Platform”, Proc. IEEE, vol. 100, no. Special Centennial Issue,
pp. 1400-1403, 2012.

[3] N. Fernando et al., ”Mobile cloud computing: A survey”, Future Gener-
ation Computer Systems, vol. 29, no. 1, pp. 84-106, Jan. 2013.

[4] H. Han et al., ”Cashing in on the Cache in the Cloud”, Parallel and
Distributed Systems, IEEE Transactions on, vol. 23, no. 8, pp. 1387-1399,
2012.

[5] D. Chiu and G. Agrawal, ”Evaluating caching and storage options on the
amazon web services cloud”, pp. 17-24, 2010.

[6] Y. Lu et al., ”Join-Idle-Queue: A novel load balancing algorithm for
dynamically scalable web services”, Performance Evaluation, vol. 68, no.
11, pp. 1056-1071, Nov. 2011.

[7] N.-L. Tran et al., ”EQS: An Elastic and Scalable Message Queue for
the Cloud”, presented at the Cloud Computing Technology and Science
(CloudCom), 2011 IEEE Third International Conference on, 2011, pp.
391-398.

[8] M. Mao and M. Humphrey, ”Auto-scaling to minimize cost and meet
application deadlines in cloud workflows”, pp. 1-12, 2011.

[9] A. Wolke and G. Meixner, ”Twospot: A cloud platform for scaling out
web applications dynamically”, pp. 13-24, 2010.

[10] W. Lu et al., ”AzureBlast: a case study of developing science applica-
tions on the cloud”, pp. 413-420, 2010.

[11] P. Marshall et al., ”Elastic Site: Using Clouds to Elastically Extend
Site Resources”, presented at the 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, pp. 43-52.

[12] T. Tung et al., ”Highly Resilient Systems for Cloud”, presented at the
2012 IEEE 19th International Conference on Web Services (ICWS), pp.
678-680.

[13] M. Armbrust et al., ”A view of cloud computing”, Commun. ACM, vol.
53, no. 4, pp. 5058, Apr. 2010.

[14] L. M. Vaquero et al., ”Dynamically scaling applications in the cloud”,
ACM SIGCOMM Computer Communication Review, vol. 41, no. 1, pp.
45-52, 2011.

[15] B. Kahle, ”HTTP Archive”, [Online]. Available: http://httparchive.org,
Jan. 2014.

[16] J. Idziorek, ”Discrete event simulation model for analysis of horizontal
scaling in the cloud computing model”, pp. 3004-3014, 2010.

[17] L. Kleinrock, ”The latency/bandwidth tradeoff in gigabit networks”,
IEEE Communications Magazine, vol. 30, no. 4, Apr. 1992.

